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Iron homeostasis pathway DNA
methylation trajectories reveal a role for
STEAP3 metalloreductase in patient
outcomes after aneurysmal subarachnoid
hemorrhage
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Samuel M. Poloyac4 , Sandra Deslouches1,5 , Elizabeth A. Crago3 and Yvette P. Conley1,5

Abstract

Background: Following aneurysmal subarachnoid hemorrhage (aSAH), the brain is susceptible to ferroptosis, a type
of iron-dependent cell death. Therapeutic intervention targeting the iron homeostasis pathway shows promise for
mitigating ferroptosis and improving recovery in animal models, but little work has been conducted in humans.
DNA methylation (DNAm) plays a key role in gene expression and brain function, plasticity, and injury recovery,
making it a potentially useful biomarker of outcomes or therapeutic target for intervention. Therefore, in this
longitudinal, observational study, we examined the relationships between trajectories of DNAm in candidate genes
related to iron homeostasis and acute (cerebral vasospasm and delayed cerebral ischemia) and long-term (Glasgow
Outcome Scale [GOS, unfavorable = 1–3] and death) patient outcomes after aSAH.
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Results: Longitudinal, genome-wide DNAm data were generated from DNA extracted from post-aSAH
cerebrospinal fluid (n = 260 participants). DNAm trajectories of 637 CpG sites in 36 candidate genes related to iron
homeostasis were characterized over 13 days post-aSAH using group-based trajectory analysis, an unsupervised
clustering method. Significant associations were identified between inferred DNAm trajectory groups at several CpG
sites and acute and long-term outcomes. Among our results, cg25713625 in the STEAP3 metalloreductase gene
(STEAP3) stood out. Specifically, in comparing the highest cg25713625 DNAm trajectory group with the lowest, we
observed significant associations (i.e., based on p-values less than an empirical significance threshold) with
unfavorable GOS at 3 and 12 months (OR = 11.7, p = 0.0006 and OR = 15.6, p = 0.0018, respectively) and death at 3
and 12 months (OR = 19.1, p = 0.0093 and OR = 12.8, p = 0.0041, respectively). These results were replicated in an
independent sample (n = 100 participants) observing significant associations with GOS at 3 and 12 months (OR =
8.2, p = 0.001 and OR = 6.3, p = 0.0.0047, respectively) and death at 3 months (OR = 2.3, p = 0.008) and a suggestive
association (i.e., p-value < 0.05 not meeting an empirical significance threshold) with death at 12 months (OR = 2.0,
p = 0.0272). In both samples, an additive effect of the DNAm trajectory group was observed as the percentage of
participants with unfavorable long-term outcomes increased substantially with higher DNAm trajectory groups.

Conclusion: Our results support a role for DNAm of cg25713625/STEAP3 in recovery following aSAH. Additional
research is needed to further explore the role of DNAm of cg25713625/STEAP3 as a biomarker of unfavorable
outcomes, or therapeutic target to improve outcomes, to translate these findings clinically.

Keywords: Epigenetics, Biomarker, Group-based trajectory analysis, Six-transmembrane epithelial antigen of prostate
3, Stroke

Background
Aneurysmal subarachnoid hemorrhage (aSAH) is a dev-
astating type of stroke with substantial variability in pa-
tient recovery and outcomes. The 30-day fatality rate
falls between 25 and 50% [1, 2], and approximately 60%
of those who survive experience a range of symptoms
and disability that can affect the ability to perform essen-
tial functions such as activities of daily living, returning
to work, and maintaining healthy relationships [3, 4].
Poor outcomes post-hospitalization have been linked to
brain injury that occurs during the first 2 weeks post-
aSAH, including acute complications such as cerebral
vasospasm (CV) and delayed cerebral ischemia (DCI)
[1]. Despite the strong association between CV, DCI,
and long-term functional outcomes, the pathophysiology
of these complications remains largely unknown and in-
terventions targeting early brain injury have not been
successful in improving long-term outcomes post-aSAH
[5].
Iron and related homeostatic mechanisms are poten-

tially important factors in response to aSAH [6–11].
Normally, iron is tightly bound to carrier proteins as fer-
ric iron [12]. However, after aSAH, blood contaminates
the subarachnoid space and cerebrospinal fluid (CSF)
where heme is broken down into carbon monoxide, bili-
verdin, and non-protein-bound ferrous iron (i.e., free
iron) [13]. “Ferroptosis” is a unique type of iron-
dependent cell death that results in secondary ischemic
brain injury following experimental subarachnoid
hemorrhage [14, 15]. Iron chelators effectively reduce as-
sociated neuronal cell death in animal models of

neurologic injury [15–18], and preliminary research in
humans supports the potential importance of iron
homeostasis in recovery from aSAH [6, 7, 10, 19].
DNA methylation (DNAm) plays a key role in gene ex-

pression and has a significant impact on adult brain
function, plasticity, and injury recovery [20], making it a
potentially useful biomarker of outcomes or therapeutic
target for intervention to improve outcomes after aSAH.
While little DNAm research has been performed in the
aSAH population specifically, peripheral blood DNA hy-
pomethylation of a candidate region of the genome has
been associated with increased mortality after ischemic
stroke [21] and global DNA hypomethylation in dam-
aged brain tissue has been observed post-injury in rats
after traumatic brain injury [22]. Because DNAm is tis-
sue- and time-sensitive, examining DNAm in CSF
acutely post-aSAH may uncover important evidence
about the pathophysiology of patient recovery and un-
favorable outcomes as the CSF clears, particularly in the
context of genes critical to iron homeostasis.
Previously, we developed an objective protocol to

largely automate group-based trajectory analysis (GBTA)
of longitudinal CSF DNAm data using an exemplar
“master” iron regulatory gene, hepcidin (HAMP) [9].
GBTA, an unsupervised clustering method, is an ideal
approach for clinical examination of DNAm data as it al-
lows one to test if the sample is composed of distinct
groups, each with a different underlying trajectory. The
identification of DNAm sites that vary over time — and
are associated with later outcomes after aSAH — may be
useful in identifying subpopulations of patients that
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require more intensive clinical management to facilitate
optimal stroke care delivery and improve patient out-
comes. In addition to understanding associations with
acute outcomes, it is important to know if CSF DNAm
trajectories are associated with long-term outcomes ei-
ther directly or indirectly via an unmeasured acute com-
plication of vascular or microvascular dysfunction.
Therefore, the purpose of this study was to investigate
associations between inferred DNAm trajectory groups
in candidate genes related to iron homeostasis and acute
and long-term patient outcomes following aSAH.

Results
Sample characteristics and overview of study workflow
and findings
As shown in the Fig. 1 study overview and workflow,
our final discovery and replication samples consisted of
260 and 100 participants, respectively, with longitudinal
DNAm data. Thirty-nine candidate genes were selected
based on their known biological roles in iron

homeostasis and are listed in the Supplementary Infor-
mation (SI, Table S1) and described in detail as part of
our previous, related work [9, 10].
Sample characteristics are presented in Table 1. Pri-

mary acute outcomes of interest included CV and DCI
(occurring during the first 2 weeks post-aSAH), and
long-term outcomes included Glasgow Outcome Scale
(GOS, unfavorable = 1–3) and death at 3 and 12months
post-aSAH. Longitudinal CSF DNAm data were available
for participants over 13 and 14 days post-injury in the
discovery and replication analyses, respectively, as de-
tailed in the methods. Participants had between 2 and 5
DNAm observations with an average of 3.2 observations
in our discovery sample and between 2 and 4 DNAm
observations with an average of 3.0 observations in our
replication sample. Details of the number of samples
available per day are presented in the SI (Table S2 and
Fig. S2).
In the entire aSAH cohort (N = 648 participants),

older age was associated with DCI occurrence (p = 0.04),

Fig. 1 Overview of study workflow and findings. aSAH, aneurysmal subarachnoid hemorrhage; QC, quality control; GBTA, group-based trajectory
analysis; CTH, cell type heterogeneity; CV, cerebral vasospasm; DCI, delayed cerebral ischemia; GOS, Glasgow Outcome Scale; N/n notation refers
to the number of participants; M/m notation refers to the number of CpG sites; dashed lines represent CTH-adjusted analyses, which were
considered a secondary focus of this study given our search for a clinical biomarker; candidate genes correspond to those shown in Table S1
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unfavorable GOS at 3 and 12 months (p = 0.03 and p =
0.04, respectively), and death at 3 and 12months (p =
0.02 and p = 0.04). Self-reported race was associated
with GOS at 3 months (p = 0.04), with individuals who
self-identified as White having a higher percentage of fa-
vorable GOS scores. Higher Fisher grade was associated
with the occurrence of CV (p = 0.01) and DCI (p =
0.03), as well as unfavorable GOS and death measured at
3 and 12months (all p < 0.001). As such, age, self-
reported race, and Fisher grade were included as covari-
ates in our logistic regression models. No significant as-
sociations between sex (assigned at birth) and patient
outcomes or intervention (surgical vs. coil embolization)
and patient outcomes were observed. However, sex was
included in our models given the importance of estrogen
response elements in iron homeostasis [23].
From the genome-wide data, DNAm data for 36 candi-

date genes and 637 CpG sites were available and ana-
lyzed as part of the targeted discovery phase (Table S1).
During data screening, DNAm observations that were
identified as extreme outliers > 3 times the interquartile
range were score adjusted to prevent bias in GBTA
(Table S1) as justified in the SI. As detailed in the
methods, to both evaluate the clinical utility of our work
and aid in biological interpretation, we performed GBTA
both with and without adjusting for cell type heterogen-
eity (CTH). For our base modeling (i.e., unadjusted for
CTH), which was the primary focus of this study given
the increased likelihood of clinical utility, our objective

protocol eliminated 412 CpG sites as trajectory groups
could not be inferred with high accuracy. At an add-
itional 42 CpG sites, we inferred only one trajectory
group. After elimination of these sites from our analysis,
183 CpG sites in 33 of our candidate genes were carried
forward for patient outcome association testing (Fig. 1).
A summary of our CTH-adjusted workflow is provided
in parallel (Fig. 1). In examining associations between
site-specific inferred DNAm trajectory groups and pa-
tient outcomes, we reported unadjusted p-values
throughout, but judged significance based on empirical
thresholds as detailed in the methods. An overview of
the results of associations with a p-value < 0.05 are pre-
sented in the SI for base models (Table S3) and CTH-
adjusted models (Table S4) and are detailed in gene-
specific tables (Additional File 2).
Three CpG sites in three candidate genes were flagged

as noteworthy of replication as outlined in the SI (Fig.
S1 and Table S5). These sites included cg25713625 in
STEAP3 metalloreductase (STEAP3), cg08866780 in the
amyloid precursor protein (APP), and cg08553327 in
tumor necrosis factor (TNF). Given the breadth of this
study, we discuss the discovery and replication results
for only these three CpG sites, but results of all discov-
ery analyses are presented in the SI as described above.
Discovery phase trajectory plots for our top three hits in
STEAP3, APP, and TNF are presented in Fig. 2 and in
the SI (Fig. S2 and Table S6). Discovery phase partici-
pant characteristics by trajectory group are presented in

Table 1 Participant characteristics for the entire aneurysmal subarachnoid hemorrhage cohort and discovery and replication sample
subsets

Variable aSAH cohort (n = 648) Discovery sample (n = 260) Replication sample (n = 100)

Age, mean years (SD) 53.2 (11.5) 53.1 (11.0) 54.2 (12.0)

Sex, female, n (%) 469 (72.4) 179 (68.8) 76 (76.0)

Self-identified race, white, n (%) 563 (86.9) 225 (86.5) 91 (91.0)

Treatment, coil embolization, n (%) 402 (62.0) 159 (61.2) 66 (66.0)

Fisher grade, n (%)

2 266 (41.0) 78 (30.0) 41 (41.0)

3 279 (43.1) 126 (48.5) 43 (43.0)

4 103 (15.9) 56 (21.5) 16 (16.0)

Outcome N Unfavorable, n (%) N Unfavorable, n (%) N Unfavorable, n (%)

CV 396 206 (52.0) 168 91 (54.2) NAa

DCI 631 253 (40.1) 258 127 (49.2)

GOS-3 555 149 (26.8) 214 71 (33.2) 99 38 (38.4)

GOS-12 530 121 (22.8) 204 53 (26.0) 93 29 (31.2)

Death-3 594 88 (14.8) 232 39 (16.8) 99 24 (24.2)

Death-12 530 96 (18.1) 204 44 (21.6) 93 26 (28.0)

aSAH, aneurysmal subarachnoid hemorrhage; SD, standard deviation; CV, cerebral vasospasm (unfavorable = CV present); DCI, delayed cerebral ischemia
(unfavorable = DCI present); GOS-3, Glasgow Outcome Scale at 3 months (unfavorable = 1–3); GOS-12, Glasgow Outcome Scale at 12 months (unfavorable = 1–3);
Death-3, death at 3 months (unfavorable = yes); Death-12, death at 12 months (unfavorable = yes); aCV and DCI were not examined in the replication sample
given null association in discovery analyses
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the SI (Tables S7 and S8). It should be noted, however,
that the base trajectory models are not directly compar-
able to the CTH-adjusted trajectory models as group
membership changes slightly between the analyses (Fig.
S3). Discovery phase binary logistic regression results ex-
ploring associations of inferred DNAm trajectory groups
with patient outcomes are presented for our top hits in
Table 2.
As described below, probe sequences for replication

by pyrosequencing (i.e., MethylSeq) were designed to
capture top hits and regions surrounding top hits. For
cg08866780 (APP) and cg08553327 (TNF), this cap-
tured the target CpG sites and additional variable
CpG sites in this region for a total of 4 sites (APP)
and 8 sites (TNF). After replication data quality con-
trol (QC), for our top hits of interest in STEAP3,

APP, and TNF, we examined a total of 1, 3, and 4
replication sites, respectively.

Detailed discovery and replication results
cg25713625 (STEAP3)
For cg25713625 (STEAP3), in the discovery and replica-
tion base models (i.e., unadjusted for CTH, Fig. 2a and c,
respectively), we inferred three trajectory groups with
similar group membership percentages including a low
DNAm group (group 1, 11.2% [discovery], 6.3% [replica-
tion]), intermediate DNAm group (group 2, 63.8% [dis-
covery], 67.5% [replication]), and high DNAm group
(group 3, 25.0% [discovery], 26.2% [replication]). Trajec-
tory shapes appeared similar between the discovery and
replication samples, though the low DNAm group had a
quadratic shape during replication. After controlling for

Fig. 2 Discovery and replication DNA methylation trajectory plots for top hits. Inferred trajectory groups computed using group-based trajectory
analysis separated by discovery phase (base models and CTH-adjusted models) and replication phase (base models only) with group membership
percentages depicted; y-axis scale, 0 to 1; the CTH-adjusted trajectory model for cg08553327 (TNF) did not pass posterior model quality control
and therefore is not included here; bars plot the 95% confidence interval for the estimate; DNA methylation data were analyzed as M values and
converted to beta values for plot presented here; a table with exact DNA methylation levels as measured by beta values is presented in Table S6
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Table 2 Discovery results of binary logistic regression and global analysis examining associations of cg25713625 (STEAP3),
cg08866780 (APP), and cg08553327 (TNF) unadjusted and CTH-adjusted trajectory groups with patient outcomes while controlling
for age, sex, self-identified race, and Fisher grade

Table 2a. cg25713625 (STEAP3)

Base model, polynomial order 010, Fig. 2a

Group 2 (intermediate) vs. group 1 (low) Group 3 (high) vs. group 1 (low)

Outcome OR 95% CI pc OR 95% CI pc Global pd

CV 0.662 0.21 to 2.03 0.471 1.126 0.33 to 3.80 0.847 0.351

DCI 1.032 0.45 to 2.41 0.941 1.256 0.49 to 3.20 0.629 0.789

GOS-3 2.982 0.86 to 12.56 0.1 11.743 3.14 to 21.65 0.0006a 0.00005a

GOS-12 6.346 1.47 to 31.32 0.029b 15.595 3.35 to 22.54 0.0018a 0.0005a

Death-3 7.147 1.00 to 32.53 0.076 19.081 3.01 to 25.12 0.0093b 0.0013a

Death-12 4.859 1.00 to 35.80 0.064 12.762 2.71 to 25.13 0.0041b 0.0015a

CTH-adjusted model, polynomial order 000, Fig. 2b

Group 2 (intermediate) vs. group 1 (low) Group 3 (high) vs. group 1 (low)

Outcome OR 95% CI pc OR 95% CI pc Global pd

CV 0.433 0.14 to 1.26 0.131 0.832 0.25 to 2.70 0.76 0.129

DCI 0.612 0.27 to 1.36 0.231 0.913 0.37 to 2.20 0.84 0.260

GOS-3 2.589 0.80 to 9.35 0.115 4.143 1.25 to 5.01 0.0271b 0.062

GOS-12 3.960 1.00 to 10.58 0.055 5.972 1.52 to 6.25 0.0182b 0.0326b

Death-3 3.768 0.90 to 11.54 0.108 4.847 1.05 to 7.50 0.069 0.122

Death-12 3.120 0.86 to 15.63 0.115 4.249 1.06 to 5.25 0.059 0.123

Table 2b. cg08866780 (APP)

Base model, polynomial order 000, Fig. 2d

Group 2 (intermediate) vs. group 1 (low) Group 3 (high) vs. group 1 (low)

Outcome OR 95% CI pc OR 95% CI pc Global pd

CV 0.443 0.19 to 0.989 0.051 0.366 0.14 to 1.00 0.056 0.069

DCI 0.803 0.44 to 1.48 0.479 1.156 0.56 to 2.41 0.698 0.488

GOS-3 0.349 0.16 to 0.74 0.0060b 0.760 0.32 to 1.82 0.541 0.0118b

GOS-12 0.194 0.08 to 0.44 0.0001a 0.826 0.39 to 1.98 0.672 0.0001a

Death-3 0.209 0.08 to 0.52 0.0010a 1.080 0.44 to 2.67 0.868 0.0002a

Death-12 0.206 0.08 to 0.50 0.0006a 0.977 0.39 to 2.43 0.96 0.0002a

CTH-adjusted model, polynomial order 000, Fig. 2e

Group 2 (intermediate) vs. group 1 (low) Group 3 (high) vs. group 1 (low)

Outcome OR 95% CI pc OR 95% CI pc Global pd

CV 0.813 0.37 to 1.76 0.602 0.654 0.25 to 1.67 0.374 0.672

DCI 1.230 0.68 to 2.24 0.494 1.400 0.67 to 2.97 0.377 0.656

GOS-3 0.332 0.16 to 0.70 0.0040b 0.683 0.27 to 1.67 0.4072 0.0097b

GOS-12 0.347 0.15 to 0.77 0.0097b 1.070 0.43 to 2.68 0.8853 0.0066b

Death-3 0.359 0.15 to 0.87 0.0237b 1.284 0.50 to 3.31 0.6028 0.0091b

Death-12 0.337 0.14 to 0.79 0.0128b 1.143 0.44 to 2.95 0.7817 0.0072b
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CTH in the discovery phase (Fig. 2b), we observed
nearly identical trajectories and group membership
percentages to those observed in the base model. Par-
ticipant characteristics by base model trajectory
groups are presented for the discovery and replication
phase in Table 3 and by CTH-adjusted model trajec-
tory groups for the discovery phase in the SI (Tables
S7 and S8). As shown in Table 3, in the discovery
phase, the low DNAm group had fewer female partic-
ipants (p = 0.011) and individuals who self-reported
their race as white (p = 0.013) while in the replication
phase, the low DNAm group had a higher mean age
(p = 0.03). No other participant differences by trajec-
tory group were observed.

In the discovery phase association analyses (Table 2a),
significant associations (i.e., p-value less than the empir-
ical significance threshold computed in permutation
testing) were identified with unfavorable GOS at 3 and
12months (p = 0.0006 and p = 0.002, respectively) and
suggestive associations (i.e., p-value < 0.05 not meeting
the empirical significance threshold) were identified with
death at 3 and 12months (p = 0.009 and p = 0.004, re-
spectively). Overall, we observed an increased odds of
unfavorable long-term outcomes (OR > 11 for all) in the
high DNAm group compared with the low DNAm
group. In our CTH-adjusted models, suggestive associa-
tions were again observed with GOS at 3 and 12months
(p = 0.03 and p = 0.02, respectively). No significant

Table 2 Discovery results of binary logistic regression and global analysis examining associations of cg25713625 (STEAP3),
cg08866780 (APP), and cg08553327 (TNF) unadjusted and CTH-adjusted trajectory groups with patient outcomes while controlling
for age, sex, self-identified race, and Fisher grade (Continued)

Table 2c. cg08553327 (TNF)

Base model, polynomial order 212, Fig. 2g

Group 2 (intermediate) vs. group 1 (low) Group 3 (high) vs. group 1 (low)

Outcome OR 95% CI pc OR 95% CI pc Global pd

CV 0.850 0.42 to 1.72 0.651 1.223 0.31 to 5.36 0.777 0.844

DCI 0.827 0.47 to 1.46 0.516 3.066 0.98 to 11.64 0.069 0.101

GOS-3 3.686 1.78 to 7.87 0.0005a 13.134 3.51 to 39.02 0.0003a 0.00001a

GOS-12 2.080 0.98 to 4.43 0.0568 4.488 1.24 to 16.50 0.0209b 0.0244b

Death-3 2.488 1.11 to 5.57 0.0257b 5.603 1.47 to 20.44 0.0089b 0.0094b

Death-12 2.496 1.12 to 5.56 0.0243b 7.123 1.89 to 27.94 0.0037b 0.0038b

Corresponds to trajectory groups depictured in Fig. 2a (STEAP3), 2b (STEAP3 + CTH), 2d (APP), 2e (APP + CTH), and 2g (TNF). Base model, unadjusted for CTH; OR,
odds ratio; CI, confidence interval; p, p-value based on an alpha of 0.05; Global p, p-value computed using partial F test comparing models with and without
trajectory group; CTH, cell type heterogeneity; CV, cerebral vasospasm; DCI, delayed cerebral ischemia; GOS-3, Glasgow Outcome Scale at 3 months (unfavorable =
1–3); GOS-12, Glasgow Outcome Scale at 12 months (unfavorable = 1–3); Death-3, death at 3 months; Death-12, death at 12 months. aSignificant associations
(meeting empirical significance level) have been bolded. bSuggestive associations (unadjusted p < 0.05) have been underlined. cEmpirical significance threshold =
0.002 (calculated based on the minimum of 12 p-values, including both group 2 vs. group 1 and group 3 vs. group 1 comparisons, in permutation testing).
dEmpirical significance threshold for global analysis = 0.003 (calculated based on the minimum of 6 p-values in permutation testing)

Table 3 Participant characteristics by trajectory groups for cg25713625 (STEAP3) discovery and replication samples

Discovery (n = 260) Replication (n = 100)

Variable Group 1
(low)

Group 2
(intermediate)

Group 3
(high)

p Group 1
(low)

Group 2
(intermediate)

Group 3
(high)

p

Group membership, n (%) 29 (11.1) 166 (63.8) 65 (25.0) 6 (6.0) 68 (68.0) 26 (26.0)

Age, mean (SD) 52.3 (12.2) 53.0 (10.8) 53.6 (11.2) 0.862a 65.2 (6.6) 54.4 (12.0) 51.0 (11.6) 0.03a

Sex, female, n (%) 13 (44.8) 118 (71.1) 48 (73.8) 0.011b 4 (66.7) 53 (77.9) 19 (73.1) 0.667c

Self-identified race, white,
n (%)

20 (69.0) 147 (88.6) 58 (89.2) 0.013b 6 (100) 61 (89.7) 24 (92.3) 1c

Fisher grade

2 6 (20.7) 54 (32.5) 18 (27.7) 0.558b 5 (83.3) 27 (39.7) 9 (34.6) 0.719b,d

3 14 (48.3) 80 (48.2) 32 (49.2) 1 (16.7) 30 (44.1) 12 (46.2)

4 9 (31.0) 32 (19.3) 15 (23.1) 0 11 (16.2) 5 (19.2)

Intervention, coil, n (%) 16 (55.2) 99 (59.6) 40 (61.5) 0.845b 4 (66.7) 46 (67.6) 16 (61.5) 0.875c

Discovery, trajectory groups depicted in Fig. 2a; Replication, trajectory groups depicted in Fig. 2c; SD, standard deviation; significant associations based on p < 0.05
have been bolded. aOne-way analysis of variance; bchi-square test of independence; cFisher’s exact test; dcomputed by combining low and intermediate groups
because of 0 cell count
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associations between inferred trajectory groups at
cg25713625 and acute outcomes of CV or DCI were
observed.
In our replication analyses, a similar additive effect

of inferred DNAm trajectory groups was observed as
shown in Table 4. As in the discovery phase, the per-
centage of participants with unfavorable outcomes in-
creased substantially with each inferred DNAm
trajectory group. For example, in our replication sam-
ple, 0% of participants in the low DNAm trajectory
group had unfavorable GOS at 3 months compared
with 61.5% of participants in the high DNAm trajec-
tory group.
In the formal replication association analyses pre-

sented in Table 5, based on the additive effect of trajec-
tory groups shown in Table 4, the low and intermediate
DNAm trajectory groups were combined to stabilize re-
gression parameters (necessary due to the low group’s
small sample size). Our discovery phase findings repli-
cated with an increased odds of unfavorable outcomes
observed in the high DNAm group compared with the
low/intermediate DNAm groups. Specifically, we

Table 4 Outcome distributions by trajectory group in cg25713625 (STEAP3) discovery and replication samples

GOS-3

Discovery (n = 214) Replication (n = 99)

Group Favorable, n Unfavorable, n % Unfavorable Favorable, n Unfavorable, n % Unfavorable

3 (high) 23 29 55.77 10 16 61.54

2 (intermediate) 101 38 27.34 45 22 32.84

1 (low) 19 4 17.39 6 0 0.00

GOS-12

Discovery (n = 204) Replication (n = 93)

Group Favorable, n Unfavorable, n % Unfavorable Favorable, n Unfavorable, n % Unfavorable

3 (high) 32 22 40.74 12 13 52.00

2 (intermediate) 97 29 23.02 46 16 25.81

1 (low) 22 2 8.33 6 0 0.00

Death-3

Discovery (n = 232) Replication (n = 99)

Group No, n Yes, n % Yes No, n Yes, n % Yes

3 (high) 40 17 29.82 15 11 42.31

2 (intermediate) 130 21 13.91 54 13 19.40

1 (low) 23 1 4.17 6 0 0.00

Death-12

Discovery (n = 204) Replication (n = 93)

Group No, n Yes, n % Yes No, n Yes, n % Yes

3 (high) 35 19 35.19 14 11 44.00

2 (intermediate) 103 23 18.25 47 15 24.19

1 (low) 22 2 8.33 6 0 0.00

Discovery, trajectory groups depicted in Fig. 2a; Replication, trajectory groups depicted in Fig. 2c; GOS-3, Glasgow Outcome Scale at 3 months (favorable = 4–5,
unfavorable=1–3); GOS-12, Glasgow Outcome Scale at 12 months (favorable = 4–5, unfavorable = 1–3); Death-3, death at 3 months; Death-12, death at 12 months

Table 5 Replication results of binary logistic regression
examining associations of cg25713625 (STEAP3) with patient
outcomes while controlling for age, sex, self-identified race, and
Fisher grade

Replication, polynomial order 002, Fig. 2c

Group 3 (high) vs. combined group 1 (low) and group 2
(intermediate)

Outcome OR 95% CI pc

GOS-3 8.190 2.51 to 31.85 0.0010a

GOS-12 6.257 1.85 to 24.53 0.0047a

Death-3 2.253 1.26 to 4.23 0.0080a

Death-12 2.028 1.10 to 3.92 0.0272b

Corresponds to trajectory groups depicted in Fig. 2c; GOS-3, Glasgow Outcome
Scale at 3 months (unfavorable = 1–3); GOS-12, Glasgow Outcome Scale at 12
months (unfavorable = 1–3); Death-3, death at 3 months; Death-12, death at
12 months. aSignificant associations (meeting empirical significance level) have
been bolded. bSuggestive associations (unadjusted p < 0.05) have been
underlined. cEmpirical significance threshold = 0.0241 (calculated based on the
minimum of 4 p-values in permutation testing)
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observed significant associations with unfavorable GOS
at 3 and 12months (OR = 8.19, p = 0.001 and OR =
6.257, p = 0.005, respectively) and death at 3 months
(OR = 2.25, p = 0.008). A suggestive association was also
observed with death at 12 months (OR = 2.03, p = 0.027)
though it did not reach our empirical significance
threshold of 0.0241 to adjust for multiple testing.
In post hoc cross-sectional analyses, we observed a

persistent association between continuous DNAm at the
STEAP3 site (ignoring trajectory groups) and patient
outcomes at time 2 (days 3 to 5 post-aSAH), time 3
(days 6 to 8 post-aSAH), and time 4 (days 9 to 11 post-
aSAH), with higher DNAm being associated with an in-
creased odds of unfavorable long-term outcomes (Table
S9). As described in the Materials and methods section,
we also had genome-wide blood DNAm data available in
a subset of 67 participants on days 1 to 2 post-aSAH. To
understand the potential utility of blood as a surrogate
for CSF, we explored the correlation between
cg25713625 CSF and blood DNAm data in the subset of
participants with both tissues (Table S10) and observed
a small to moderate correlation (R = 0.36, p = 0.0029,
Fig. S4). In formal logistic regression analyses, no signifi-
cant associations between continuous DNAm in neither
CSF nor blood were observed on days 1–2 post-aSAH in
the small subset of participants with both tissues (Table
S11).

cg08866780 (APP)
For cg08866780 (APP), in the discovery phase base
model, we inferred three flat trajectory groups including
a low DNAm group (group 1, 24.2%), intermediate
DNAm group (group 2, 53.5%), and high DNAm group
(group 3, 22.3%) (Fig. 2d). Even after correcting for
CTH, we observed very similar trajectory patterns at this
CpG site (Fig. 2e). Participant characteristics by trajec-
tory group are presented in the SI (Tables S7 and S8). In
discovery phase association analyses, significant associa-
tions were identified with favorable GOS at 12 months
(p = 0.0001) and survival at 3 and 12months (p = 0.001
and p = 0.0006, respectively) and a suggestive association
was identified with GOS at 3 months (p = 0.006). Over-
all, we observed that participants in the intermediate
DNAm group (group 2) had a decreased odds of un-
favorable outcomes compared with low and high DNAm
groups (groups 1 and 2, respectively) (Table 2b). These
results were consistent even after correction for CTH
with suggestive associations identified between inferred
trajectory groups and favorable GOS at 3 and 12months
(p = 0.004 and p = 0.01, respectively) and survival at 3
and 12months (p = 0.02 and p = 0.01, respectively)
(Table 2). No significant associations between inferred
trajectory groups at cg08866780 and acute outcomes of
CV or DCI were observed.

In our replication analyses, the observed structure did
not replicate in any of the three APP sites evaluated (Fig.
2f and Fig. S5) nor did the models meet our post-GBTA
diagnostic criteria (Table S12). Therefore, no APP sites
were carried forward for patient outcome association
testing in the replication phase.

cg08553327 (TNF)
Finally, for cg08553327 (TNF), in the discovery base
models (i.e., unadjusted for CTH), we inferred three tra-
jectory groups including a low DNAm group (group 1,
67.3%), intermediate DNAm group (group 2, 26.9%), and
high DNAm group (group 3, 5.8%). In contrast to the
CpG sites discussed above, DNAm at this site was quite
dynamic after aSAH (Fig, 2g) and the TNF gene housed
a hotspot of several CpG sites that were significantly as-
sociated with patient outcomes after aSAH and had
similar trajectory shapes as shown in the SI (Table S5
and Additional File 2). CpG site cg08553327 was specif-
ically chosen for replication because it had the smallest
p-value in the gene and was amenable to MethylSeq.
While the CTH-adjusted trajectory model at cg08553327
did not meet our post-GBTA diagnostic criteria, two
other sites within the hotspot did and resulted in three
steadily decreasing trajectory groups. At these sites, after
correction for CTH, suggestive associations persisted be-
tween inferred trajectory groups and GOS at 3months
(Additional File 2). Participant characteristics by trajec-
tory group are presented in the SI (Tables S7 and S8). In
discovery phase association analyses, significant associa-
tions were identified with unfavorable GOS at 3 months
(p = 0.0003) and suggestive associations were identified
with unfavorable GOS at 12 months (p = 0.02) and death
at 3 and 12months (p = 0.009 and p = 0.004, respect-
ively). Overall, we observed that participants in both the
intermediate and high DNAm groups had an increased
odds of unfavorable outcomes (Table 2c). No significant
associations between inferred trajectory groups at
cg08553327 and acute outcomes of CV or DCI were
observed.
In our replication analyses, the observed structure in

the discovery data partially replicated in shape, but not
group membership at TNF site 3 (Fig. 2h) but not in
sites 1, 2, or 4 (Fig. S6). Only the trajectory models for
sites 3 and 4 met our post-GBTA diagnostic criteria
(Table S12) and were carried forward for patient out-
come association testing. None of the observed associa-
tions with patient outcomes replicated (Table S13).

Discussion
Examining DNAm of CSF, a tissue that is proximal to
the central nervous system and drained as part of clinical
management to reduce intracranial pressure post-aSAH,
offered a unique insight into patient recovery,
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particularly in the context of iron homeostasis post-
hemorrhage. Of the candidates examined, associations
from three CpG sites in three genes were examined in
replication testing including cg25713625 (STEAP3),
cg08866780 (APP), and cg08553327 (TNF). Of these, our
replication analyses supported nearly identical inferred
DNAm trajectory groups and relationships with patient
outcomes for cg25713625 (STEAP3, UCSC Genome
Browser GRCh37/hg 19, chr2: 120022835). Specifically,
as the inferred DNAm trajectory group level increased,
participants had an increased odds of unfavorable GOS
and death at 3 and 12 months.
STEAP3 was selected as a candidate gene for this study

given its primary role in iron transport and homeostasis.
Specifically, metalloreductase STEAP3 (Steap3), also
known as six-transmembrane epithelial antigen of pros-
tate 3, the protein encoded by the STEAP3 gene, con-
verts the stable but insoluble ferric form of iron to a less
stable but soluble ferrous form [24]. Steap3 deficiency
leads to impaired iron homeostasis and presents clinic-
ally as microcytic anemia with iron overload [24]. In
addition to iron overload as a primary mechanism con-
tributing to ferroptosis, accumulation of lethal, lipid-
based reactive oxygen species has also been found to be
important [25, 26]. Specifically, elevated free iron post-
aSAH has great potential to cause oxidative degradation
of lipids that make up cell membranes. For example, in
animal models of subarachnoid hemorrhage, elevated
iron caused an increase in lipid peroxides and adminis-
tration of ferrostatin-1, a lipophilic antioxidant which
protects cell membranes from lipid oxidation, in turn
decreased free iron and improved lipid peroxidation
[25]. This intervention successfully prevented both fer-
roptosis and early brain injury, but had no effect on
apoptosis [25]. Beyond this preclinical work, the role of
lipid peroxidation metabolites (e.g., 20-HETE) has been
associated with unfavorable outcomes after aSAH in
humans [27]. Increased levels of Steap3, though essential
to normal iron homeostasis, can result in degradation of
the cellular membrane through lipid peroxidation, lead-
ing to failure of hemolysis and clearance of red blood
cells [28], further highlighting the potential importance
of this gene.
In addition to iron homeostasis and lipid peroxidation,

knockdown of STEAP3 has been shown to inhibit cell
progression suggesting this protein may also play a role
in downstream responses to p53, including promoting
apoptosis [29]. Steap3 is also thought to be important in
immunity as iron deficiency confers resistance to the risk
of infection [24]. STEAP3, the only STEAP family mem-
ber to be highly expressed in macrophages, has been
shown to be down-regulated by lipopolysaccharide ad-
ministered as a surrogate for infection in rats [24]. Our
CpG site of interest, cg25713625, is annotated to a south

shore in the 3′ untranslated region of STEAP3. Aside
from associations with age in whole blood in children
[30–32], there is no significant literature directly related
to cg25713625. Interestingly, however, STEAP3 has been
identified as a differentially expressed gene in the intra-
cranial aneurysm wall compared with a control tissue of
the superficial temporal artery [33]. Specifically, in a
study of 6 participants with unruptured intracranial an-
eurysms, the authors observed a fold change > 2.5 with
higher STEAP3 expression observed in aneurysm tissue
[33].
A surprising finding of this study was that, with the

exception of the low DNAm trajectory group in the rep-
lication sample, we observed little change over time in
the trajectories inferred at this CpG site (Fig. 2a–c).
These data suggest that DNAm at this site may not re-
spond dynamically as hypothesized, at least acutely post-
aSAH, and that longitudinal data are likely not needed
for use as a clinical biomarker. We confirmed this in
post hoc cross-sectional analyses in which we observed
largely persistent associations between continuous
DNAm (ignoring trajectory groups) and long-term out-
comes (Table S9). Though these associations were not
significant at cross-sectional time 1 (days 1 to 2 post-
aSAH) or cross-sectional time 5 (days 12 to 13 post-
aSAH), the odds ratios were generally all in the expected
direction. Notably, even when correcting for CTH in our
discovery analyses, similar associations were observed at
this CpG site, suggesting the association is not
dependent on changing cell type proportions, further in-
creasing its potential clinical utility.
In comparing cg25713625 DNAm in blood and CSF,

we observed only a small to moderate correlation, sug-
gesting blood might not be an appropriate surrogate for
this STEAP3 CSF biomarker (Fig. S4). In our formal re-
gression exploring this further, while there were no sig-
nificant associations in either tissue, the odds ratios were
in the expected direction in CSF (OR > 1), but not blood
(OR < 1), further supporting the idea that blood might
not be an appropriate surrogate (Table S11). In any case,
these exploratory post hoc analyses were conducted in a
small subset of the data (n = 67 participants), which
greatly limits the interpretability. Studies in larger sam-
ples are needed.
We also selected APP as a candidate gene for inclusion

in this study as amyloid precursor protein is highly
expressed in the human brain and ubiquitously
expressed across many human tissues [34, 35]. Specific
to iron homeostasis, the role of APP in managing iron
levels is feedback-regulated as iron influx is an import-
ant driver in translational expression of neuronal APP
via an iron-responsive element and, in turn, APP plays a
role in iron efflux by stabilizing the heavy subunit of fer-
ritin and ferroportin-1 at the binding site [34]. Likewise,
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TNF was selected for inclusion as tumor necrosis factor
is a pro-inflammatory cytokine most commonly recog-
nized for its role in inflammation [36]. Iron homeostasis
and inflammation are intimately tied as iron deficiency
confers resistance to risk of infection and improves in-
flammatory conditions (e.g., anemia of inflammation in
chronic disease). TNF plays an important role in iron
homeostasis and host defense through regulating inflam-
mation and hypoferremia [37]. Based on our discovery
analyses, sites in APP (cg08866780, UCSC Genome
Browser GRCh37/hg 19, chr21: 27543523) and TNF
(cg08553327, UCSC Genome Browser GRCh37/hg 19,
chr6: 31543647) were selected for replication. We were
unable to replicate our findings, however, suggesting
DNAm at the two sites examined are not likely import-
ant biomarkers or clinical targets post-aSAH.

Strengths and limitations
There were many strengths to this study. First, the
DNAm data were quite unique and available in a rela-
tively large sample of aSAH participants compared with
other patient outcome studies post-aSAH. In addition to
being longitudinal in nature spanning the acute recovery
period post-aSAH, these data were generated from post-
aSAH CSF, an understudied tissue. Likewise, we had
blood DNAm data in a subset of participants for
comparison. Using these data and our objective
GBTA approach, we were able to identify dynamic
changes in CSF DNAm following aSAH. Furthermore,
because genome-wide DNAm data existed in our dis-
covery sample, we were able to examine the effects of
CTH. CTH is critical in biological interpretation of
DNAm studies as differences in cell type proportions
within biosamples can impact the overall DNAm
level. In the case of post-aSAH CSF, biological inter-
pretation of results presents even greater challenges
given the immediate contamination of CSF by periph-
eral blood, vessel tissue, and brain tissue, but gradual
clearing during the acute recovery period. In the case
of clinical interpretation, however, it matters less if
the biomarker association is attributed to DNAm re-
lated to changing CTH for that site — or simply the
site itself without regard to CTH — as long as a sig-
nal can be replicated. While CTH can be controlled
for if genome-wide DNAm data are collected [38], it
is currently not practical to do so for a clinical bio-
marker given the associated expense of either cell-
sorting or generating genome-wide DNAm data.
Additional strengths of this study included rigorous

data QC, imbedded replication, and collection of val-
idation samples (i.e., DNAm data collected for 78
samples from 22 participants using both the discovery
and replication platforms). In examining these data,
we observed a strong correlation between discovery

and replication DNAm data (R = 0.74), though the
replication data were shifted up by approximately 10%
(Fig. S7). Furthermore, in contrast to traditional
GBTA, which requires iterative modeling and subject-
ive decision-making from researchers, the GBTA ap-
plied here was objective and reproducible as it was
largely automated and used a predefined decision-
making tree and modeling protocol as detailed else-
where [9]. Not only did we replicate both the struc-
ture and associations observed for the STEAP3 site in
an independent sample of participants, but we were
also able to perform a sensitivity GBTA which in-
cluded the 22 overlapping validation participants. Of
the 22 participants, 16 were assigned to the same
group in the replication phase as in the discovery
phase. While 8 participants shifted to a new group in
the replication (Fig. S8), in all cases, it was an adja-
cent group (e.g., low to intermediate rather than low
to high), further highlighting the replicability of our
protocol.
Despite these strengths, there are some important

limitations. First, this study was primarily made up of
participants who self-reported their race as White. Al-
though the distribution of race observed is largely
consistent with Southwestern Pennsylvania demo-
graphics, this limits the generalizability of our findings
in other races, ethnicities, and ancestries. These fac-
tors should be examined in larger and more diverse
samples in the future. Next, we used a candidate gene
approach which has important weaknesses [39]. How-
ever, we addressed the major concerns of candidate
gene studies by carefully correcting for multiple test-
ing and replicating our findings in an independent
test sample of participants.
While the objective nature of our automated

protocol was an important strength of this study, it
also eliminated a large portion of CpG sites at which
we could not reliably infer trajectory groups. As
such, there may be important signals in these data
that were not examined in association testing with
patient outcomes. Similarly, our tier 1 analyses were
limited to existing genome-wide DNAm data. As
part of our genome-wide DNAm data QC pipeline
described below, CpG sites located on the X
chromosome were removed. Therefore, data for two
of our candidate genes (HEPH and HJV) were not
available for analysis despite their roles in iron
homeostasis. It is possible that variability in these
genes is important to outcomes after aSAH. Finally,
due to budgetary limitations, we could not collect
replication data for all CpG sites that met signifi-
cance after correction for multiple testing. While we
attempted to be as objective as possible in our
prioritization of results for replication, true and
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important signals may exist for other CpG sites.
These sites should be examined in the future, par-
ticularly those highlighted in Table S5.

Conclusion
The results of this study support a role for DNAm of
cg25713625 (STEAP3) in recovery following aSAH.
Based on the inferred DNAm trajectories at cg25713625
observed here, we conclude that longitudinal data are
not required as CSF DNAm of this site did not appear
to change significantly post-aSAH. Additional research,
including functional studies, is needed to better under-
stand ferroptosis post-aSAH and further explore the po-
tential role of CSF DNAm of cg25713625/STEAP3 as a
biomarker of unfavorable outcomes, or therapeutic tar-
get to improve outcomes, to translate these findings
clinically.

Materials and methods
Study design, setting, and sample
This was an ancillary, observational, candidate gene as-
sociation study that capitalized on an existing cohort of
aSAH participants with longitudinal phenotype data,
biosamples, and genome-wide DNAm data for a subset
of participants (Fig. 1) [40]. This study assessed the rela-
tionship between inferred DNAm trajectories of iron
homeostasis candidate genes and patient outcomes
acutely (first 2 weeks post-aSAH) and in the long-term
(at 3 and 12months post-aSAH) using a two-phase de-
sign (targeted discovery and replication).
This study adhered to all ethical considerations and

was approved by the Institutional Review Board of the
University of Pittsburgh. Following informed consent,
participants were prospectively recruited from UPMC
Presbyterian neurovascular intensive care unit in Pitts-
burgh, PA, between 2000 and 2017 if they (1) were aged
18 years and older, (2) were newly diagnosed (≤5 days)
with aSAH verified with cerebral angiogram, (3) had a
Hunt and Hess grade ≥ 2 and/or Fisher grade ≥ 1, (4)
were able to read/speak English, and (5) had no history
of debilitating neurological disorders. Additional inclu-
sion criteria for this ancillary study included ventricu-
lostomy insertion as part of clinical management to
supply CSF samples and availability of serial CSF sam-
ples across 14 days post-aSAH.

DNA methylation data
Discovery phase

Data collection The discovery phase capitalized on
existing, longitudinal, genome-wide DNAm data col-
lected for 273 participants at up to five time points over
14 days following aSAH as previously described [41]
(Fig. 1). DNAm data were generated from DNA

extracted from bagged CSF collected as a standard treat-
ment and changed daily for 14 days following aSAH by
trained study staff using sterile procedures. The CSF
samples were centrifuged, and the cellular pellet and
supernatant were stored at −80° until DNA extraction.
DNA was extracted from the cellular pellet using the
QIAmp Midi kit (catalog #51185) from Qiagen Corp
(Qiagen, Valencia, CA, USA), DNA concentration and
quality checks were completed, and bisulfite conversion
was performed. Genome-wide DNAm data were gener-
ated and scanned using the Infinium HumanMethyla-
tion450 Beadchip and Illumina iSCAN (Illumina,
Incorporated, San Diego, CA, USA) at Johns Hopkins
University’s Center for Inherited Disease Research.
As part of our laboratory QC procedures, samples

were placed across 11 plates using several strategies to
reduce the impact of technical artifacts as described in
detail elsewhere [41]. Technical replicates and DNAm
control samples were included to assess the reliability of
data. Raw genome-wide DNAm data were analyzed
using Genome Studio Software (Illumina, Incorporated,
San Diego, CA, USA). In parallel, for a subset of 88 par-
ticipants, genome-wide DNAm data were generated
from peripheral blood at a single time point, targeting
the early admission period, as detailed elsewhere [41]. In
post hoc analyses detailed below, these data were used
to compare DNAm in CSF and blood for our top hits,
limiting the data to overlapping CSF and blood samples
available on days 1–2 post-aSAH for 67 participants.

Genome-wide data QC Genome-wide data cleaning
and QC was implemented using R packages minfi [42]
and ENmix [43]. This pipeline included removal of
poorly performing and outlying samples based on bisul-
fite control intensities and detection p-values and back-
ground and dye bias correction to remove non-specific
signals from the DNAm data [43, 44]. To further reduce
technical variation related to Infinium 450K platform
chemistry (i.e., differences in type I and type II probes)
and batch effects (i.e., chip, row, and column effects),
functional normalization was performed using the “pre-
processfunnorm” function from the minfi package [42,
45]. Additional details of our QC pipeline are summa-
rized elsewhere [41]. Of the available sample, observa-
tions from days 0 and 14 were removed due to low
sample counts, and 13 participants were dropped be-
cause they had only one DNAm data observation which
precluded trajectory analysis. Our final discovery sample
size was 260 participants.

Cell type heterogeneity Under normal conditions, CSF
is clear and contains few cells. Following aneurysm rup-
ture, however, CSF is contaminated with both peripheral
blood and tissue from the ruptured aneurysm, which
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gradually clears as the CSF renews during recovery. Be-
cause no reference-based methods exist to control for
CTH in post-aSAH CSF, we explored this in detail in
the discovery phase by generating estimated cell type
proportions from the genome-wide DNAm data using
Houseman’s reference-free method [46]. This results in
estimated proportions of five putative “cell types” for
each biosample which were used in our analyses as de-
tailed below.

DNAm data extraction Thirty-nine candidate genes
were selected based on their known biological roles in
iron homeostasis and described in detail as part of our
previous, related work [9, 10]. DNAm data for our can-
didate genes were extracted from the gene transcript re-
gion ±2000 base pairs upstream and downstream. Data
for two genes (HEPH and PGRMC1) were not available
in the cleaned genome-wide data and data for the hepci-
din gene (HAMP) were analyzed in the pilot work to de-
velop the protocols for this study (Table S1) [9].

Replication phase

Prioritization of top hits for replication Following
gene-specific data screening and analysis described
below, top hits for replication were prioritized based on
the strength of the identified associations, consistency of
results after adjustment for CTH, and presence of hot-
spots (i.e., multiple CpG sites near each other associated
with outcomes) as detailed in the SI (Fig. S1).

DNAm data collection and QC The replication sample
was recruited together with the discovery sample as part
of a larger parent cohort (Fig. 1). Longitudinal replica-
tion DNAm data were generated from CSF for our top
hits using pyrosequencing (i.e., MethylSeq) at the Center
for Inherited Disease Research. Using 500 ng of DNA,
bisulfite conversion was carried out with the Qiagen Epi-
Tect Bisulfite kit and PCR reactions were completed
using the Qiagen Pyromark PCR Kit following standard
protocols and assays designed by and proprietary to Qia-
gen. Data were generated using Qiagen Pyromark Q48
Autoprep instrument and were called using the Pyro-
mark Q48 Autoprep 2.4.2 software. Probe sequences
were designed to capture top hits and regions surround-
ing top hits. As part of our QC filtering, sites with > 5%
of samples failing MethylSeq were excluded. Individual
samples with incomplete conversion were not used for
sequencing and individual samples that failed the
MethylSeq assay were excluded. Additional replication
data collection details are provided in the SI (Section II).
In total, MethylSeq data were generated for 122 partici-
pants, 22 of which overlapped with the discovery sample
for validation purposes. The final replication sample size

(i.e., independent participants) was 100 participants (Fig.
1).

Patient outcomes
Acute patient outcome measures included the occur-
rence or absence of CV and DCI within a 14-day win-
dow following aSAH. CV was defined as ≥25% cerebral
vessel narrowing measured by a neurosurgeon via cere-
bral angiogram obtained as clinically necessary [9], and
DCI was defined as the co-occurrence of neurological
deterioration (e.g., new and persistent [> 1 h] neuro-
logical deficit) and abnormal cerebral blood flow mea-
sured using cerebral angiogram or transcranial Doppler
(performed twice a day) [9]. Acute outcomes of CV and
DCI were treated as binary (occurrence/absence).
Long-term patient outcome measures included the

GOS and death at 3 and 12months following aSAH.
These data were collected by trained study staff via in-
person or telephone interviews. The GOS is an indica-
tion of a participant’s ability to function on a scale of 1
(death) to 5 (good recovery) and has established validity
in people with neurological injury [47]. GOS was dichot-
omized as good (scores of 4 to 5) or unfavorable (scores
of 1 to 3). Death data were obtained from the medical
record, caregiver/family report, or the Social Security
Death Index and treated as binary (yes/no) at the out-
come timepoint of interest. In cases where participants
were unable to take part in the interview, a caregiver or
family member knowledgeable about the participant’s
ability to function was interviewed. All study staff in-
volved in outcome data collection were blinded to
DNAm status.
Finally, this study capitalized on existing confounding/

covariate data extracted from the medical record or col-
lected in surveys as part of a larger research study. These
demographic and clinical data included age, sex, race,
treatment/intervention, and Fisher grade which provides
a measure of the initial extent of aSAH injury based on
the amount and distribution of blood observed on a
computed tomography scan.

Statistical analyses
Preliminary analyses
All statistical analyses were conducted using R [48] and
SAS (SAS Institute Incorporated, Cary, NC, USA).
Standard descriptive statistics were computed for all in-
dependent, dependent, and potentially confounding/co-
variate data given the variable’s level of measurement.
Preliminary analyses were conducted to identify poten-
tial confounders/covariates. DNAm data were analyzed
as M values and any value labeled as an extreme outlier
(a DNAm value above or below three times the inter-
quartile range) was replaced with the maximum or mini-
mum observed DNAm value below the extreme outlier
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threshold for values on each day. Missing data were
assessed and filled in from the medical record when pos-
sible. An expanded description of our statistical analyses
is provided in the SI (Section III).

Group-based trajectory analyses
GBTA, an unsupervised clustering method used to iden-
tify clusters of individuals who have similar development
trajectories (e.g., DNA methylation trajectory groups
post-aSAH), was conducted using Proc TRAJ and a cen-
sored normal model in SAS. While other methods of
longitudinal modeling (e.g., latent curve analysis) esti-
mate the sample average trajectory and use covariates to
explain variability about this average, GBTA is dissimilar
in that it assumes the sample is composed of distinct
groups, each with a different underlying trajectory.
GBTA is a highly flexible approach, allowing for a var-
iety of complexities including missing or sparse data,
time-varying covariates, and small sample sizes as it
uses the maximum likelihood method to estimate pa-
rameters, including group sizes and shapes of trajec-
tories [49, 50]. Therefore, GBTA is an ideal approach
to apply in cases where individual observations are
available from different time points (e.g., different
days post-aSAH) as it generates asymptotically un-
biased parameter estimates.
In GBTA, models with a varying number of groups

and polynomial orders (i.e., group trajectory shapes) are
compared to find the model that best fits the longitu-
dinal data [51]. As part of this process, a trajectory
group-specific posterior probability of assignment is
computed for each participant. Ultimately, individuals
are assigned to the group for which their posterior prob-
ability is the highest [51]. Given the subjectivity and itera-
tive modeling required in traditional GBTA, and the large
number of candidate genes and CpG sites examined here,
the model selection process was largely automated. Specif-
ically, we determined the “best fitting” of 39 possible
models with a maximum of three groups and comprehen-
sive combinations of polynomial orders of 0 (intercept
only), 1 (linear), and 2 (quadratic). Our GBTA automated
protocol has been described in detail as part of our pilot
work [9] and summarized in the SI (Section II).
Following GBTA for each CpG site, we performed a

secondary evaluation of model adequacy (i.e., evaluation
of post-GBTA diagnostics) using several traditional mea-
sures including (1) an average posterior probability
(AvePP) > 0.7, (2) odds of correct classification (OCC) >
5, (3) estimated group membership (π) > 5%, (4) reason-
ably close estimated group membership (π) versus the
assigned group proportion (P*), and (5) a relatively nar-
row 95% confidence interval for the estimated group
probability (π) [9, 49]. If the trajectory model for an in-
dividual CpG site failed for the top two “best” models,

we concluded that DNAm trajectory groups could not
be inferred with high accuracy for that site and it was
excluded from further analysis [9].
To examine the potential clinical utility of DNAm tra-

jectories unadjusted for CTH, as well as to support the
biological interpretation of results evaluating potential
confounding by cell type, we implemented our GBTA
protocol twice for all CpG sites to compute DNAm tra-
jectories both unadjusted for CTH (i.e., base models)
and adjusted for CTH [9]. CTH data were generated in
our QC pipeline as described above and were controlled
for as time-varying covariates during GBTA in our
CTH-adjusted models, embedding the additional vari-
ables within the trajectory group assignment. GBTA was
performed using M values and final models and esti-
mates were converted to beta values for presentations in
trajectory plots.

Patient outcome association testing Binary logistic re-
gression was performed in R to determine the relation-
ship between inferred trajectory groups for each CpG
site and patient outcomes while controlling for age, sex,
race, and Fisher grade (i.e., Outcome ~ Trajectory group
+ age + sex + race + Fisher grade). A partial F test was
used to produce a global p-value of the overall model fit
by comparing the full model (including the trajectory
group) with a restricted model (omitting the trajectory
group). As detailed in the SI (Section III), permutation
testing was used to correct for multiple testing of corre-
lated outcomes [9]. Associations with a p-value < 0.05
were considered suggestive, and associations with a p-
value falling below the empirical significance threshold
were considered significant.

Post hoc analyses
Longitudinal DNAm data were collapsed into cross-
sectional time points including time 1 (days 1–2 post-
aSAH), time 2 (days 3 to 5 post-aSAH), time 3 (days 6
to 8 post-aSAH), time 4 (days 9 to 11 post-aSAH), and
time 5 (days 12 to 14 post-aSAH). Binary logistic regres-
sion was performed to determine the relationship be-
tween continuous DNAm of top hits (i.e., ignoring
trajectory groups) and patient outcomes while control-
ling for age, sex, race, and Fisher grade within cross-
sectional time points. For the subset of participants with
both CSF and blood DNAm data on days 0–2 post-
aSAH (n = 67 participants), M values and beta values
were compared using scatterplots and Pearson correl-
ation coefficients, and regression lines were drawn to
better understand this relationship relative to y = x. Fi-
nally, binary logistic regression was again performed to
explore the relationship between continuous DNAm of
top hits in CSF and blood and patient outcomes while
controlling for age, sex, race, and Fisher grade.
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