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Abstract

Background: Aging populations in Africa face a growing burden of non-communicable diseases (NCDs),
contextualized in broad external exposome and weak health systems. These could accelerate aging and shorten
lifespan. DNA methylation (DNAm) epigenetic clocks allow investigation of biological aging, and perform well in
high-income countries. However, their validity has rarely been tested in low- and middle-income countries. We
investigated the performance of epigenetic clocks (as aging biomarkers), and their cardio-metabolic risk profiles
among adults in south-central Côte d’Ivoire.

Results: We derived four measures of epigenetic clocks (i.e., HorvathAge, HannumAge, PhenoAge and GrimAge)
and their corresponding epigenetic age acceleration (EAA; Intrinsic, Extrinsic, PhenoAA and GrimAA) using genome-
wide DNAm data from 393 participants of the Côte d’Ivoire dual burden of disease study, aged 18–79 years.
Epigenetic age exhibited strong correlations (0.83 ≤ Pearson’s r ≤ 0.93) but weaker concordance (0.73 ≤ Lin’s rC ≤
0.85) with chronological age. Epigenetic clocks optimally predicted chronological age at 32 (HannumAge), 62
(HorvathAge) and 78 (GrimAge) years. Multivariable linear EAA models identified male sex (IEAA, EEAA and GrimAA),
lower household wealth (EEAA and PhenoAA), high-risk alcohol intake (PhenoAA and GrimAA), smoking (GrimAA),
physical activity (IEAA and GrimAA) and body mass index [BMI] (GrimAA) as independent determinants. Physical
activity and BMI exhibited quadratic associations with GrimAA. Illustratively, GrimAge was accelerated in
underweight and obese participants. Risk associations of GrimAA were largely driven by age-adjusted DNAm
surrogate plasminogen activator inhibitor-1 (DNAmPAI-1) and pack years. Multivariable logistic models of cardio-
metabolic phenotypes identified EEAA, PhenoAA and DNAmPAI-1 as determinants of high blood pressure, fasting
glucose, triglycerides and metabolic syndrome severity.

Conclusions: We provide evidence validating the applicability of epigenetic clocks as aging biomarkers and
potential link between sociodemographic and lifestyle-related factors, and cardio-metabolic health in the
underrepresented African population. Future longitudinal studies incorporating broad environmental aspects and
age-related clinical outcomes should allow to pinpoint the clinical and public health utility of DNAm clocks as
mediators in NCD trajectory, in low- and middle-income countries.
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Introduction
Life expectancy in low- and middle-income countries
(LMICs) is increasing. This is attributed to reductions in
early childhood mortality and higher life expectancy in
older age [1, 2]. By 2050, the global population of people
aged 65 years and older is expected to triple to 1.5 bil-
lion, with most of the increase occurring in LMICs [2].
Africa—predominated by LMICs—is undergoing rapid
epidemiological transition towards non-communicable
diseases (NCDs) in a backdrop of infectious diseases, en-
vironmental stressors and weak health systems. These
contextual factors could contribute to low-grade chronic
inflammatory state and “inflammaging”, resulting in
higher incidence of NCDs and mortality at relatively
younger ages [3, 4].
DNA methylation (DNAm), an epigenetic modulator

of genetic expression, can be modified by environmental
exposures and is recognized as a molecular hallmark of
ageing [5, 6]. Hence, DNAm captures acute and chronic
exposures, as well as disease risks [7, 8]. Indeed, age-
dependent DNAm patterns have been used to derive dif-
ferent types of biomarkers of chronological and bio-
logical age, termed the epigenetic clocks [9]. Two groups
of epigenetic clock biomarkers have proven their utility
in NCD risk prediction. These include the first-
generation leukocyte-based HannumAge [10] and pan-
tissue HorvathAge [9]—both exclusively trained on
chronological age, and the second-generation leukocyte-
based PhenoAge and GrimAge—both trained on a com-
bined measure of chronological age and several subclin-
ical NCD-related phenotypes and risk factors [11, 12].
The standardized measure of epigenetic age acceler-

ation (EAA) has been linked with several NCD-related
lifestyle risk factors, in a clock-specific manner [13–15],
highlighting their ability to uniquely capture some as-
pects of aging. However, there has been more limited
characterization of the socioeconomic and lifestyle de-
terminants of the second-generation clocks, compared
to the first-generation clocks [14]. EAA, on the other
hand, was associated with clinical outcomes (including
cardiovascular disease, diabetes, cancer and mortality) in
a more consistent manner, with varying magnitude and
precision across clocks [14].
Most epigenetic clock studies evidencing the validity

of DNAm-based biomarkers as predictors of NCD risk
were performed in high-income countries. There is only
sparse evidence from studies in LMIC, and specifically
studies from Africa. An exploratory study of 256 Central
African hunter gatherers reported a positive correlation

between chronological and HorvathAge, with lower
EEAA in urban dwellers compared to their rural coun-
terparts [16]. Recent investigations of different epigen-
etic clock biomarkers in 120 black South African men
(prospective urban and rural epidemiology cohort
[PURE-SA-NW]) and 712 Ghanaians (research on obes-
ity and diabetes among migrants [RODAM]) also re-
ported positive correlations across clocks, with GrimAge
exhibiting the highest correlation with chronological age
in both studies [17, 18]. The validation of epigenetic
clocks and understanding their applicability as risk
markers in the African context therefore requires more
evidence from diverse age groups, socioeconomic status
and settings. Specifically, differences by sex, socioeco-
nomic status and urbanization are relevant aspects of
EAA but remain understudied. Furthermore, a parallel
investigation of EAA with cardio-metabolic outcomes
would evidence their potential utility in linking environ-
mental (and lifestyle) exposures to cardio-metabolic dis-
ease in transitioning societies.
In this study, we aimed to test the validity of different

DNAm-based epigenetic clock biomarkers, and their
cardio-metabolic risk profiles, in adults from urban and
rural settings of south-central Côte d’Ivoire. Figure 1
presents the study’s overarching framework. First, we ex-
tend principles of causality to investigate the cross-
sectional associations of four blocks of risk factors (i.e.,
biological, socioeconomic, lifestyle and body mass index
[BMI]) with EAA, where the preceding block(s) is a po-
tential confounder of the succeeding block(s), and the
latter block(s), a potential mediator of the former. Sec-
ond, we investigate the association of each EAA measure
with metabolic syndrome (MetS) and its severity, for im-
proved population-level understanding of EAA as car-
diovascular risk markers in this setting.

Results
Descriptive statistics
Details of the study population, setting and sampling are
presented in “Study sample” and “Measurement of
DNAm” sections. We included 393 participants aged
18–79 years of the Côte d’Ivoire dual burden of disease
(CoDuBu) study who had complete data on epigenetic
clocks and relevant covariates. Participants comprised
48% females, 55% rural dwellers and 52% with at least
primary-level education. Most of the participants were
lifetime non-smokers (85%), low-risk alcohol drinkers
(65%) and attained recommended levels of physical ac-
tivity (98%). Mean (standard deviation [SD]) of BMI was
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23.3 (4.0) and a majority of the sample (65%) was normal
weight. Prevalence of underweight, overweight and gen-
eral obesity was 7%, 18% and 8%, respectively (Table 1).
We identified components of MetS in the study sam-

ple: 25% had central obesity (based on waist circumfer-
ence), 31% had high blood pressure, 56% had high
fasting glucose, and 50% and 8% had low high-density
lipoprotein (HDL) and high triglycerides, respectively.
One hundred and thirty-two participants (34%) had one
MetS component, whereas 87 participants (22%) had
three or more MetS components, and were defined as
cases of metabolic syndrome (Table 1).

Accuracy of epigenetic age as biomarkers of
chronological age
Table 2 presents the overall performance of four epigen-
etic clock biomarkers to derive epigenetic age estimates
in the present study. Mean (SD) chronological age was
41.5 (13.0) years. Pearson’s pairwise correlations between
chronological age and epigenetic age were high (0.83 ≤
Pearson’s r ≤ 0.93) for all four epigenetic clocks. How-
ever, Lin’s concordance between epigenetic and chrono-
logical age were comparatively weaker (0.73 ≤ Lin’s rC ≤
0.85). Prediction accuracy of HannumAge was higher
than HovarthAge, with mean (SD) epigenetic age differ-
ence [EAD] (i.e., epigenetic age−chronological age) of −
1.9 (6.6) and 5.8 (7.2) years, and Lin’s coefficients of bias
(CB) of 0.99 and 0.89, respectively. Prediction accuracy

of both first-generation clocks were also higher than the
second-generation clocks (Table 2). HannumAge and
HovarthAge predictions were optimal at chronological
ages of 32 and 62 years, respectively. GrimAge was opti-
mal at 72 years, whereas PhenoAge was beyond the
lower age limit of our sample (Fig. 2). The differences
between epigenetic clocks remained consistent among
apparently healthy participants defined as non-smoking
participants without any of the five MetS features (Table
2).
Between-epigenetic age correlations were high (0.82 ≤

Pearson’s r ≤ 0.90), but the between-EAA correlations
were considerably lower (0.24 ≤ Pearson’s r ≤ 0.66).
While EAD had weak to moderate negative correlations
with chronological age, EAA did not correlate with
chronological age (Table 2).

Associations between sociodemographic and lifestyle
factors, and EAA
Multiple linear regressions of EEA on chronological age
and sex (model 1) showed consistent increase in IEAA,
EEAA and GrimAA in males compared to females, inde-
pendently of chronological age. Mean IEAA, EEAA and
GrimAA increased in males by 1.6 (0.5, 2.7) years, 2.9
(1.5, 4.4) years and 2.7 (2.0, 3.4) years, respectively, com-
pared to females. PhenoAA was not associated with sex,
but was directionally consistent with the other clocks
(Table 3).

Fig. 1 Analytical framework for the present study. DNAm, DNA methylation. Numbers represent sequence of hierarchical regression models.
Models 1-4 were multivariable linear regressions of age acceleration on the groups of risk factors. Model 5 was multivariable binomial and ordinal
logistic regressions of metabolic syndrome and severity on age acceleration and all risk factors. Model 5 was tested with and without inclusion of
body mass index as a potential confounder. Metabolic syndrome is a binary variable where the presence of any three of high blood pressure,
impaired fasting glucose, low high-density lipoprotein, high triglycerides, and central obesity was considered positive, and otherwise, negative.
Metabolic syndrome severity is an ordinal variable with a range of 0–5 capturing the number of metabolic syndrome components in
each participant
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Table 1 Phenotypic profile of included participants of the CoDuBu study in south-central Côte d’Ivoire

Phenotype Subphenotype N (%) Mean (SD)

Chronological age (years) All 41.5 (13.1)

Sex Females 189 (48.1)

Males 204 (51.9)

Formal education None 190 (48.3)

Primary 90 (22.9)

Secondary or tertiary 113 (28.8)

Household wealth index All − 0.3 (3.2)

Area Rural 215 (54.7)

Urban 178 (45.3)

Smoking status Never-smoker 333 (84.7)

Former smoker 29 (7.4)

Current smoker 31 (7.9)

Alcohol consumption score (AUDIT-C) a All 1.2 (2.0)

Low risk 239 (60.8)

Moderate risk 89 (22.7)

High risk 65 (16.5)

Physical activity (MVPA; min·week−1) b All 2447 (999)

Sufficient activity 387 (98.5)

Insufficient activity 6 (1.5)

Body mass index (BMI; kg·m−2) c All 23.3 (4.1)

Underweight 28 (7.1)

Normal weight 264 (67.2)

Overweight 71 (18.1)

Obese 30 (7.6)

Metabolic syndrome components d Central obesity 100 (25.4)

Raised blood pressure 123 (31.3)

Impaired fasting glucose 220 (56.0)

Low HDL-cholesterol 196 (49.9)

High triglycerides 32 (8.1)

Metabolic syndrome severity e All 1.7 (1.1)

0 51 (13.0)

1 132 (33.6)

2 123 (31.3)

3 59 (15.0)

4 24 (6.1)

5 4 (1.0)

Metabolic syndrome ≥ 3 components 87 (22.1)

AUDIT-C alcohol-use disorder identification test-consumption, CoDuBu Côte d’Ivoire dual burden of disease study, HDL high-density lipoprotein, MVPA moderate-
to-vigorous physical activity, N (%) count and frequency of variable, SD standard deviation
aAUDIT-C score classification for risky alcohol consumption (males): 0–4 (low); 5–7 (moderate); 8–12 (high). Females: 0–3 (low); 4–7 (moderate); 8–12 (high)
bInsufficient physical activity defined as having less than 150 min per week of MVPA
cBMI classification: < 18.5 (underweight), 18.5–24.9 (normal weight), 25–29.9 (overweight), ≥ 30 (obesity)
dCentral obesity defined as having a waist circumference ≥ 94 cm (males) and ≥ 80 cm (females). Raised blood pressure defined as systolic blood pressure ≥ 135
mmHg or diastolic blood pressure ≥ 90 mmHg or use of blood pressure-lowering medication or having clinician-diagnosed hypertension. Impaired fasting glucose
defined as having fasting glucose ≥ 5.6 or presence of clinician-diagnosed diabetes or use of glucose-lowering medication. Low HDL was defined as < 1.0
mmol·L−1 and < 1.3 mmol L−1 in males and females, respectively, whereas high triglycerides was defined as ≥ 1.7 mmol L−1
eDegree of severity defined by accumulation of number of metabolic syndrome components described above
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We evaluated association of socioeconomic factors
with EAA by mutual adjustment (of model 1) for educa-
tional attainment, household wealth and urbanization
(model 2). Highest household wealth tertile was inde-
pendently associated with a decrease of 1.9 (− 0.1, 3.9)
years and 2.2 (0.2, 4.2) years in mean EEAA and Phe-
noAA, respectively. Association between wealth, IEAA
and GrimAA were directionally consistent, but imprecise
(Table 3).
We evaluated association of lifestyle-related factors

with EAA by mutual adjustment (of model 2) for smok-
ing, alcohol consumption and physical activity (model
3). Smoking was associated with an increase of 3.5 (2.4,
4.5) years in mean GrimAA. High-risk alcohol consump-
tion was associated with an increase of 0.8 (0.0, 1.5)
years and 1.5 (0.0, 3.1) years in mean GrimAA and Phe-
noAA, respectively. Lowest tertile of physical activity
was directionally consistent across EAA measures with
the strongest positive association observed with IEAA.
Linear term of physical activity also negatively associated
with mean IEAA. We observed a positive quadratic rela-
tionship between physical activity and GrimAA (Fig. 3),
indicating increase in mean GrimAA at lowest and high-
est tertiles of physical activity levels (Additional file 1:
Table S1). These associations were independent of socio-
demographic and other lifestyle covariates.
Effect estimates of overweight or obesity compared

to normal weight, were directionally consistent

(positive associations) across EAA measures. Linear
terms of BMI were directionally inconsistent across
EAA. Similar to physical activity, we observed a
quadratic relationship between BMI and GrimAA
(Fig. 3), indicating increase in mean GrimAA at low
(underweight) and high BMI (obesity) levels (Add-
itional file 1: Table S1). These associations were in-
dependent of sociodemographic and lifestyle
covariates.
Associations of risk factors with PhenoAA and Gri-

mAA were robust to leukocyte proportions (Additional
file 1: Table S2). Simple and partial Spearman correla-
tions of the risk factors and age-adjusted GrimAge com-
ponents identified plasminogen activator inhibitor-1
(DNAmPAI-I) and smoking pack year (DNAmPKYRS)
surrogates to largely drive the associations (Additional
file 1: Table S3). We also observed positive partial corre-
lations of age-adjusted DNAmPAI-I and DNAmPKYRS
with male sex and high-risk drinking. Smoking
(DNAmPKYRS) and BMI (DNAmPAI-I) were also asso-
ciated with these plasma proteins (Additional file 1:
Table S4).

Associations between sociodemographic and lifestyle
factors, and EAA: effect modification
We tested potential effect modifications by age
group (cut-off at median value of 41 years), sex and
urbanization (Additional file 1: Tables S5–S7).

Fig. 2 Linear fit of epigenetic age difference and chronological age in the CoDuBu study, south-central Côte d’Ivoire. CoDuBu, Côte d’Ivoire dual
burden of disease study. Chronological age was measured at health examination, and epigenetic age measures were estimated from blood
samples taken at health examination. Clock-specific epigenetic age difference (Y) is the absolute difference between clock-specific DNAmage and
chronological age (X). R2 is the squared value of the correlation coefficient
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Education was associated with a decrease in IEAA
and GrimAA in females and in older participants (>
41 years), respectively. Household wealth was associ-
ated with a decrease in IEAA in younger participants
(≤ 41 years), and a decrease in EEAA and GrimAA
in urban area. High-risk alcohol intake also showed
consistent acceleration of all four clocks in younger
participants. Smoking was increased EEAA, PhenoAA
and GrimAA in males. Lower physical activity was
associated with increased EEAA, PhenoAA and Gri-
mAA in rural area. Overweight or obesity was asso-
ciated with increased EEAA and PhenoAA in
females, and increased PhenoAA and GrimAA in
rural area. Although interaction terms were often
imprecise, we observed consistent negative associa-
tions of household wealth, and consistent positive
associations of alcohol intake with all EAA measures,
in younger participants.

Associations between EAA and cardio-metabolic
phenotypes
EEAA and PhenoAA were associated with metabolic
syndrome severity, with respective odds ratios (ORs) and
95% confidence intervals (CIs) of 1.23 (1.02, 1.49) and
1.26 (1.03, 1.55) per 1-SD increase in EAA. These associ-
ations were independent of demographic, socioeconomic
and lifestyle variables described above. Associations with
MetS, though imprecise, were directionally consistent
and of similar magnitude with those of MetS severity.
GrimAA had directionally consistent associations of
lower magnitude with both MetS phenotypes, whereas
IEAA tended to be negative. EEAA and PhenoAA were
also associated with high blood pressure (OREEAA 1.28
(1.00, 1.64); ORPhenoAA 1.22 (0.96, 1.56)) and fasting glu-
cose ((OREEAA 1.19 (0.96, 1.47); ORPhenoAA 1.19 (0.96,
1.47)). These associations were robust to adjustment for
BMI. PhenoAA-MetS severity association was also

Table 3 Sociodemographic and lifestyle determinants of epigenetic age acceleration in the CoDuBu study, south-central Côte
d’Ivoire

Model Risk factor IEAA EEAA PhenoAA GrimAA

β (95% CI) β (95% CI) β (95% CI) β (95% CI)

1 Female Ref. Ref. Ref. Ref.

Male 1.60 (0.51, 2.69)** † 2.94 (1.45, 4.44)***† 0.52 (− 0.93, 1.97) 2.72 (1.99, 3.44)*** †

2 Primary education or less Ref. Ref. Ref. Ref.

Higher education 0.66 (− 0.72, 2.04) − 0.45 (− 2.31, 1.41) − 0.08 (− 1.80, 1.95) − 0.03 (− 0.95, 0.89)

2 Lower wealth tertiles Ref. Ref. Ref. Ref.

Highest wealth tertile − 0.54 (− 2.01, 0.94) − 1.94 (− 3.93, 0.06)*† − 2.16 (− 4.17, − 0.15)** † − 0.54 (− 1.53, 0.44)

2 Rural area Ref. Ref. Ref. Ref.

Urban area 0.79 (− 0.57, 2.13) − 1.38 (− 3.19, 0.44) − 0.68 (− 2.49, 1.13) 0.15 (− 0.75, 1.05)

3 Never-smokers Ref. Ref. Ref. Ref.

Ever-smokers 0.36 (− 1.34, 2.06) − 1.56 (− 3.85, 0.74) 1.44 (− 0.80, 3.67) 3.45 (2.37, 4.53)*** †

3 Low-risk drinking (AUDIT-C) Ref. Ref. Ref. Ref.

High-risk drinking 0.54 (− 0.63, 1.71) 0.44 (− 1.14, 2.01) 1.52 (− 0.01, 3.06)* † 0.78 (0.04, 1.52)** †

3 Physical activity (min·week−1) − 0.50 (− 1.10, 0.09)* † 0.04 (− 0.76, 0.85) − 0.11 (− 0.89, 0.68) − 0.06 (− 0.44, 0.31)

3 More active thirds c Ref. Ref. Ref. Ref.

Least active third 0.62 (− 0.65, 1.88) 0.03 (− 1.67, 1.73) 0.29 (− 1.37, 1.94) 0.29 (− 0.52, 1.09)

4 Body mass index [BMI] (kg·m−2) 0.05 (− 0.55, 0.64) 0.26 (− 0.55, 1.06) 0.43 (− 0.35, 1.22) − 0.12 (− 0.50, 0.25)

4 BMI < 25 Ref. Ref. Ref. Ref.

BMI ≥ 25 0.15 (− 1.21, 1.51) 0.37 (− 1.46, 2.20) 0.10 (− 1.68, 1.88) 0.03 (− 0.83, 0.89)

AUDIT-C alcohol-use disorder identification test-consumption, β beta-coefficient, CI, confidence interval, CoDuBu Côte d’Ivoire dual burden of disease study, EEAA
extrinsic epigenetic age acceleration, GrimAA GrimAge acceleration, IEAA intrinsic epigenetic age acceleration, PhenoAA PhenoAge acceleration. Rural area
represents Amani-Ménou and Tokohiri whereas urban area represents Taabo-Cité
aHigh-risk consumption defined as AUDIT-C score > 3 (females) or > 4 (males), whereas low-risk consumption is defined as scoring less than the aforementioned
scores. Beta-coefficients represent change in mean age acceleration in each risk group compared to a reference group, or per standard deviation increase in risk
factor (physical activity and BMI). *p value < 0.1. **p < 0.05. ***p < 0.001
† Precision of estimates stable in fully adjusted Model 4
Model 1 Adjusted for chronological age
Model 2 Model 1 + education, household wealth and urbanization
Model 3 Model 2 + smoking status, alcohol consumption and physical activity. Linear and categorical estimates for physical activity were derived from
separate models
Model 4 Model 3 + BMI. Linear and categorical estimates for BMI were derived from separate models
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robust to adjustment for leukocyte proportions. Phe-
noAA was associated with high triglycerides (OR 1.61
(1.02, 2.64)) in the model that accounted for leukocyte
composition (Table 4).
Although GrimAA did not associate with MetS, the

DNAmPAI-I and DNAmLeptin components were asso-
ciated with both MetS (ORPAI-I 1.78 (1.33, 3.39); ORLeptin

1.27 (0.97, 1.26)) and MetS severity (ORPAI-I 1.58 (1.30,
1.91); ORLeptin 1.21 (1.00, 1.46)) per 1-SD increase in
DNAmPAI-I and DNAmLeptin, respectively. Among the
single MetS components, DNAmPAI-I and DNAmLep-
tin were associated with high blood pressure, triglycer-
ides and central obesity, whereas only DNAmPAI-I was
associated with high fasting glucose. Associations of
DNAmPAI-I were robust to adjustment for BMI,
whereas associations of DNAmLeptin were weakened by
BMI (Additional file 1: Table S8).

Associations between EAA and cardio-metabolic
phenotypes: effect modification
Tests of effect modifications by age group, sex and
urbanization yielded largely overlapping subgroup esti-
mates, and imprecise interaction terms (Additional file
1: Table S9). However, subgroup estimates of association
between EAA and MetS phenotypes tended to be direc-
tionally consistent within chronological clocks and bio-
logical clocks. On the one hand, we observed higher

odds of MetS in relation to IEAA and EEAA in older,
male or urban-dwelling participants. On the other hand,
we observed higher odds of MetS in relation to Phe-
noAA and GrimAA in younger, female or urban-
dwelling participants.

Discussion
Summary of findings
In this cross-sectional study of adults from primarily
rural and some urban areas of south-central Côte
d’Ivoire, DNAm clocks exhibited high correlations with
chronological age, but weaker prediction accuracy. Han-
numAge was more accurate than HovarthAge, and both
first-generation clocks performed better than the
second-generation mortality clocks. Independent deter-
minants of acceleration in one or more clocks included
male sex (IEAA, EEAA and GrimAA), lower socioeco-
nomic status (EEAA and PhenoAA), lower physical ac-
tivity (IEAA), high-risk alcohol consumption (PhenoAA
and GrimAA) and smoking (GrimAA). Interestingly,
GrimAge was accelerated at both extremes of physical
activity and BMI. EEAA and PhenoAA were positively
associated with high blood pressure, fasting glucose and
MetS. Consistent with EEAA and PhenoAA findings, the
DNAmPAI-1 component of GrimAge was associated
with both lifestyle risks and cardio-metabolic pheno-
types. Together highlight potential “risk factor-EAA-

Fig. 3 Marginal associations of physical activity, BMI and GrimAge acceleration in the CoDuBu study, south-central Côte d’Ivoire. BMI, body mass
index; CoDuBu, Côte d’Ivoire dual burden of disease study. Point estimates represent marginal change in mean Grim Age acceleration in relation
to levels of physical activity (left) and BMI (right). Estimates are derived from multivariable linear regression models adjusted for chronological age,
sex, education, household wealth index, urbanization, smoking status, alcohol consumption (for physical activity model) and physical activity (for
BMI model)
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clinical phenotype” paths for future longitudinal medi-
ation studies.

Contextual relevance
Our finding of high correlations of these epigenetic
clocks, including potential uniqueness of each EAA
measure (evidenced by weak inter-EAA correlations), in
this setting of Côte d’Ivoire, support previous findings in
high-income countries [11, 15, 19, 20]. Consistent with
the findings in RODAM and PURE-SA-NW studies,
HannumAge and GrimAge had stronger correlations
than HovarthAge and PhenoAge, respectively, with
chronological age [17, 18]. The magnitude of correlation
of chronological age, HorvathAge and HannumAge in
our study was comparable to those of the RODAM

study, but higher than those of the PURE-SA-NW study.
The age and sex distribution of our sample was more
similar to the RODAM study than the PURE-SA-NW
study, which included only older males. Furthermore,
under-prediction at higher chronological age was more
pronounced in the PURE-SA-NW than in our study and
confirm previous findings of weaker performance of
these clocks in older individuals [21]. The general lack
of associations with Horvath clock also agree with previ-
ous studies reporting least phenotypic associations with
IEAA in relation to the extrinsic EAAs [14]. This could
be explained by IEAA’s exclusive age-based training
model, its characteristic lack of inter-individual variabil-
ity in leukocyte composition, and hence, are independent
from extrinsic factors. In contrast, the acceleration of

Table 4 Association between epigenetic age acceleration and metabolic syndrome components in the CoDuBu study, south-central
Côte d’Ivoire

Predictor Model High blood
pressure

Impaired fasting
glucose

Low high-density
lipoprotein

High
triglyceride

Central
obesity

Metabolic
syndrome

Metabolic
syndrome severity

OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) OR (95%
CI)

OR (95% CI) OR (95% CI)

IEAA 1 1.17 (0.93, 1.46) 1.01 (0.82, 1.23) 0.89 (0.73, 1.08) 0.88 (0.61,
1.27)

0.86 (0.68,
1.09)

0.77 (0.60,
0.99)**

0.94 (0.79, 1.13)

2 1.16 (0.92, 1.46) 1.01 (0.82, 1.25) 1.00 (0.80, 1.23) 0.85 (0.58,
1.26)

0.97 (0.74,
1.28)

0.83 (0.63, 1.10) 1.02 (0.86, 1.22)

3 1.18 (0.92, 1.50) 1.01 (0.82, 1.25) 0.99 (0.80, 1.23) 0.83 (0.53,
1.29)

0.90 (0.60,
1.36)

0.78 (0.57, 1.08) 1.03 (0.86, 1.24)

EEAA 1 1.14 (0.91, 1.43) 1.30 (1.06, 1.60)** 0.98 (0.80, 1.20) 1.26 (0.88,
1.80)

0.77 (0.61,
0.98)**

1.04 (0.82, 1.33) 1.09 (0.91, 1.30)

2 1.28 (1.01,
1.63)**

1.19 (0.95, 1.48) 1.07 (0.86, 1.33) 1.23 (0.85,
1.79)

0.98 (0.74,
1.31)

1.20 (0.91, 1.59) 1.21 (1.01, 1.46)**

3 1.28 (1.00,
1.64)*

1.19 (0.96, 1.48) 1.07 (0.86, 1.32) 1.29 (0.86,
1.95)

0.81 (0.53,
1.22)

1.23 (0.90, 1.57) 1.23 (1.02, 1.49)**

PhenoAA 1 1.17 (0.93, 1.46) 1.25 (1.03, 1.53)** 1.09 (0.89, 1.33) 1.28 (0.90,
1.84)

0.98 (0.78,
1.24)

1.18 (0.92, 1.50) 1.22 (1.02, 1.47)**

2 1.24 (0.98,
1.58)*

1.19 (0.96, 1.47) 1.12 (0.90, 1.38) 1.33 (0.91,
1.94)

1.09 (0.82,
1.45)

1.25 (0.95, 1.64) 1.26 (1.04, 1.54)**

3 1.22 (0.96, 1.56) 1.19 (0.96, 1.47) 1.10 (0.90, 1.37) 1.30 (0.86,
1.94)

0.97 (0.64,
1.46)

1.21 (0.89, 1.64) 1.26 (1.03, 1.55)**

4 1.20 (0.93, 1.54) 1.06 (0.84, 1.33) 1.14 (0.90, 1.44) 1.61 (1.02,
2.64)**

1.12 (0.83,
1.52)

1.18 (0.88, 1.59) 1.20 (0.97, 1.47)*

GrimAA 1 0.95 (0.75, 1.18) 1.10 (0.90, 1.34) 0.87 (0.71, 1.07) 1.00 (0.70,
1.44)

0.65 (0.51,
0.84)**

0.80 (0.62,
1.02)*

0.85 (0.71, 1.02)*

2 0.98 (0.75, 1.27) 1.07 (0.85, 1.36) 1.18 (0.93, 1.49) 1.09 (0.76,
1.66)

0.93 (0.67,
1.27)

1.06 (0.79, 1.42) 1.08 (0.86, 1.37)

3 0.98 (0.75, 1.29) 1.07 (0.85, 1.36) 1.19 (0.94, 1.51) 1.05 (0.66,
1.68)

0.81 (0.51,
1.29)

1.05 (0.79, 1.49) 1.16 (0.91, 1.47)

4 0.98 (0.73, 1.29) 0.99 (0.77, 1.29) 1.24 (0.95, 1.61) 1.11 (0.68,
1.82)

0.96 (0.67,
1.33)

1.03 (0.75, 1.43) 1.06 (0.83, 1.35)

CI confidence interval, CoDuBu Côte d’Ivoire dual burden of disease study, EEAA extrinsic epigenetic age acceleration, GrimAA Grim age acceleration, IEAA intrinsic
epigenetic age acceleration, OR odds ratio, PhenoAA Pheno age acceleration. Estimates represent odds of each phenotype in relation to one standard deviation
increase in each epigenetic acceleration measure. All estimates were from multivariable binomial and ordinal logistic regression models. *p value < 0.1. **p < 0.05
Model 1 adjusted for chronological age
Model 2 Model 1 + sex, education, household wealth index, urbanization, smoking status, alcohol consumption and physical activity
Model 3: Model 2 + body mass index
Model 4 Model 3 + leukocyte composition

Sanchez et al. Epigenetics Communications             (2022) 2:1 Page 9 of 16



second-generation clocks is dependent on leukocyte
composition and capture inter-individual differences in
background inflammatory state and disease risk [6, 9].
Our findings of sex-differences in epigenetic age accel-

eration provide the first evidence from Africa in this re-
gard, and validate previous findings from different
contexts [14]. Male sex is the most consistently reported
risk factor for EAA. Exploring EAA-sex interactions on
MetS, however, revealed that females had higher MetS
risk, despite higher EAA in males. Paradoxically, we ob-
served a tendency for higher MetS risk in relation to
chronological age in males and higher MetS risk in rela-
tion to epigenetic age acceleration in females. DNAm
age acceleration markers might therefore provide a
promising avenue to understand the unbiased sex-
specific risk of disease and the role of healthcare access
and poverty-related factors in understanding the higher
rates of morbidity among females in this setting [22].
Socioeconomic status remains a relevant determinant

of longevity [23]. Studies of EAA and dimensions of so-
cioeconomic status (including education) have shown
protective associations with extrinsic measures of EAA
[24]. These align with our findings of consistent negative
association of household wealth with acceleration of all
four clocks. It is expected that urbanization in this set-
ting might in fact capture most aspects of household
wealth and education, and a parallel consideration of
these three dimensions might constitute over-
adjustment. This is, however, not the case in our study
as these factors were only moderately correlated, allow-
ing us to investigate independent associations of each di-
mensions in relation EAA (Additional file 1: Table S3).
Interestingly, household wealth was generally more pro-
tective of EAA in urban area and education was protect-
ive of GrimAA in older participants. These might reflect
the healthcare access, affordability and use by individuals
of higher socioeconomic status, contributing to their
slower rate of aging. Detailed investigation into several
dimensions of socioeconomic status (jointly and inde-
pendently), would improve the characterization of the
clocks in relation to socioeconomic status in resource-
poor settings.
Evidence relating alcohol and smoking to EAA has

been mixed [14]. Although alcohol frequently demon-
strates a nonlinear relationship with mortality [25], dir-
ectionally consistent pooled evidence of increased EAA
with alcohol consumption was reported across all clocks
[14]. Specifically, alcohol-use disorder, as measured in
our study, was consistently associated with acceleration
of mortality clocks [12]. Smoking impacts DNA methyla-
tion and has more consistent association with mortality
than alcohol consumption. Smoking was associated
more frequently with the mortality than chronological
clocks [11, 19, 24]. Smoking status was correlated with

DNAm surrogates of pack years, adrenomedullin and
tissue inhibitor metalloproteinase-1 (TIMP-1), whereas
high-risk drinking correlated with DNAm surrogates of
beta-2 microglobulin (B2M), growth differentiation
factor-15 (GDF-15), pack years and PAI-I, and therefore
clarifies their consistent positive association with Gri-
mAA in the current and previous studies [13, 19]. How-
ever, the lack of multivariable associations of smoking
and alcohol with the mortality clocks in the RODAM
study [17] highlights the potential role of confounders
on age-related DNA methylome, and the need to investi-
gate clock components in clarifying the presence or lack
of associations in future studies.
Our observation of borderline association of physical

activity and Horvath clock agrees with previous findings
[14]. In addition, the acceleration of GrimAge at ex-
tremes of physical activity levels support the physical ac-
tivity paradox in mortality. This is especially of interest
in resource-poor settings with a predominance of non-
leisure manual labour. Excessive physical activity, espe-
cially in the occupational context, might increase the
risk of mortality [26, 27]. Repetitiveness of non-leisure
activity and insufficient recovery time potentially pro-
mote chronic exhaustion, elevated haemodynamic pa-
rameters and therefore cardiovascular diseases [27–29].
We have not distinguished occupational from leisure
physical activity in this study. Therefore, investigation of
various physical activity domains in future studies will
contribute to the evidence in this setting regarding the
beneficial effect of leisure-time activity in a context of
excessive occupational physical activity.
Our observation of non-linear association of BMI with

GrimAA reflects the complexity of BMI measure and
the need for considering polynomials in BMI associa-
tions. Linear BMI term seemed to support the recently
reported negative association between BMI and EAA
[17]. However, further investigation showed accelerated
GrimAge with both underweight and obesity. Interest-
ingly, underweight had higher magnitude and precision
in comparison to obesity. BMI in this setting does not
only capture NCD-related lifestyle risks, but also under-
nutrition secondary to access, infections and psycho-
somatic stress [14]. Given that BMI might not entirely
capture adiposity, future studies incorporating body fat
measures are warranted to deepen the understanding of
these findings in the African context.
Our findings of EEAA associations with metabolic syn-

drome severity agree with previous findings [13, 30].
The association of PhenoAA with MetS is unsurprising
given that glucose and C-reactive protein are part of the
PhenoAge training model [11]. Although GrimAA was
associated with several risk factors, it only tended to as-
sociate with MetS in younger participants, confirming a
previous finding in Korean adults [31]. Furthermore,
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PAI-I was the major driver of GrimAge associations with
multiple risk factors and MetS. These findings align with
previous reports of PAI-I as a major predictor of several
NCDs and mortality, highlighting further, the relevance
of parallel consideration of GrimAge components in fu-
ture studies [12, 31, 32]. PAI-I may therefore be a more
reliable marker of metabolic dysregulation (resulting
from oxidative stress and cell damage) and aging, and
needs further exploration for their public health and
clinical utility in this setting [33, 34].

Strengths and limitations
To our knowledge, this is the first study that investigated
age-related DNAm as a link between sociodemographic
and lifestyle risk factors and MetS severity in an African
setting. We applied a comprehensive approach in esti-
mating the effect of each risk factor, with minimal bias,
in a cross-sectional context. The inclusion of a broad
range of age groups, several dimensions of socioeco-
nomic status (education, wealth and urbanization), poly-
nomial and categorical lifestyle associations, and effect
modification by age, sex and urbanization allowed a
broad view of the patterns of association in this setting.
Further investigations into GrimAge components, both
with risk factor and MetS, contributed to the compre-
hensiveness of our approach. Our findings of higher
MetS risk (in younger participants) in relation to mor-
bidity and mortality clocks agree with recent hypotheses
of younger age of onset of NCDs and related mortality
in settings of epidemiological transition [3, 4, 35]. The
combination of DNA methylome, NCDs and related ex-
ternal exposome in the CoDuBu study provide a unique
resource for further investigations into much-needed
evidence from Africa linking DNAm and the burden of
NCDs.
Our study is limited by its cross-sectional design,

which hinders causal inference of the results. The cross-
sectional design also limits the exploration and inter-
pretation of directionality. Although the investigated risk
factors precede biological ageing and disease, it remains
unclear if biological ageing precedes or succeeds disease
development [6, 30], highlighting the relevance of longi-
tudinal data in deepening the understanding of the
causal paths linking biological ageing and disease. How-
ever, our findings are still relevant given the general lack
of evidence on age acceleration from Africa in particular,
and the limited investigation of the mortality clocks in
terms of their socioeconomic and lifestyle determinants.
Our sample size might be considered small relative to
previous studies. However, this sample was originally se-
lected to investigate the DNA methylome profile of
asymptomatic malaria parasitaemia, and includes all
asymptomatic malaria cases and randomly selected mal-
aria negative participants in a ratio of 1:3 [36]. Apart

from oversampling of malaria cases, the remaining char-
acteristics were comparable between this sample and the
original CoDuBu cohort (Additional file 1: Table S10).
In addition, the correlation matrices and primary EAA
and MetS models were stable to the exclusion of the 93
malaria cases in the sample (Additional file 1: Tables
S11–S13).

Conclusions
We have demonstrated parameters of the DNAm-based
epigenetic clocks to be valid and useful chronological or
biological age estimators in this African setting of epide-
miologic transition. As more DNAm data from African
become available and more accessible, future discovery
studies on DNAm epigenetic clocks incorporating Afri-
can DNAm data are warranted. Our results highlight the
utility of DNAm patterns as defined by different epigen-
etic clocks as analytical tools to investigate known socio-
demographic and lifestyle risk factors, and cardio-
metabolic health in the specific settings of LMICs. A
broader understanding of EAA in LMICs would involve
the incorporation of other aspects of the external expo-
some, including environmental exposures to pollutants,
stress, sleep quality and psychological factors in explana-
tory EEA models to specifically identify public health
and clinical translational utility of EEAA, PhenoAA and
PAI-I in resource-poor settings.

Materials and methods
Study sample
This investigation was done within the CoDuBu study,
which aimed to understand the co-occurrence of com-
mon infections and NCDs in the Taabo health and
demographic surveillance system (HDSS) in south-
central Côte d'Ivoire [37]. The detailed CoDuBu proto-
col is published elsewhere [38]. Concisely, the study
began in 2017 and included 1019 adults selected at ran-
dom, from three purposively selected HDSS areas of
varying urbanization. Participants underwent detailed
health examinations including anthropometry (body
height, weight and waist circumference) and subclinical
cardio-metabolic phenotyping, including blood pressure,
fasting glucose level and blood lipid profile. Dried blood
spots were prepared on Whatman FTA cards, air-dried
at room temperature, sealed in desiccant containing
pouches, according to manufacturer’s instructions, and
stored at − 80° C in a biobank. Participants underwent
interviews assessing their sociodemographic, behav-
ioural, lifestyle and environmental characteristics, as well
as health status and healthcare use, among others. The
CoDuBu study was approved by the Côte d’Ivoire Na-
tional Ethics Committee for Life and Health Sciences
(ref. no. 032/IMSHP/CNER-kp; date of approval: March
24, 2017) and the Ethics Committee of North-West and
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Central Switzerland (ref. no. 2016-00143; date of ap-
proval: May 2, 2016). All participants provided written
informed consent before participation in the study [38].

Measurement of DNAm
DNA was extracted from ~ 280 mm2 (10 × 6 mm
punch) blood spot per subject for 400 FTA cards using
standard salting out procedure based method [39]. The
EZ 96-DNA methylation kit (Zymo Research; Irvine, CA,
USA) was used for bisulfite-conversion of DNA.
Epigenome-wide DNA methylation was measured using
the Illumina Infinium MethylationEPIC BeadChip (Illu-
mina, Inc.; San Diego, CA, USA) that covered 866,091
probes. Samples were randomly distributed on arrays to
minimize batch effects. Each batch had multiple identi-
cal control samples to assess assay variability. Dye-bias
correction [40] and absolute methylation level (β values,
defined as the ratio of methylation intensity over total
intensity, with offset of 100, were computed using the
minfi R-package (R Development Core Team) [41].
Quality control excluded 24,138 probes (detection p
value > 10−16) and seven samples (call rate < 95% [n = 5]
and sex mismatch [n = 2]). We applied beta mixture
quantile normalization of the β values to correct for the
Illumina probe design bias [42]. We included 841,953
CpG sites from 393 participants in subsequent determin-
ation of epigenetic age.

Estimation of epigenetic age
We estimated the parameters of participants’ epigen-
etic age (and corresponding measures of age acceler-
ation) from the new DNAm age calculator [9] where
the participants’ DNAm beta values and annotation
files were used as input files. HannumAge, Horvath-
Age, PhenoAge and GrimAge were estimated using
the 71, 353, 513 and 1030 CpGs reported in their dis-
covery studies, respectively [9–12]. Leukocyte propor-
tions (B cells, CD4+ T, CD8+ T, granulocytes,
monocytes and natural killer cells) were estimated
using the Houseman’s method implemented in the
online calculator [41, 43].
EAA was calculated for each clock as the residuals

of linear regression of epigenetic age on chronological
age [9, 16]. Unlike absolute difference measures, these
residuals are robust to measurement platforms and
normalization methods, with improved comparability
across studies [44]. Specifically, IEAA is derived from
regressing HorvathAge on chronological age and
leukocyte composition, hence its intrinsic property.
EEAA is derived from regressing a weighted average
of HannumAge and age-varying leukocyte compo-
nents (naïve cytotoxic T cells, exhausted cytotoxic T
cells and plasmablasts) on chronological age [45].
This weighted average measure (and therefore EEAA)

captures both age-related changes in leukocyte com-
position and intrinsic aging. PhenoAA and GrimAA
are derived from regressing PhenoAge and GrimAge
on chronological age, respectively [11, 12]. Given that
GrimAge comprises eight DNAm surrogates of
plasma proteins (adrenomedullin, B2M, GDF-15,
Cystatin C, leptin, PAI-1 and TIMP-1) and pack
years, we derived their chronological age-adjusted
equivalents for further investigation into GrimAA.
The epigenetic clocks of our sample were based on
the EPIC array, which does not cover six CpGs of
HannumAge and 19 CpGs of HorvathAge. Neverthe-
less, recent comparative studies showed EPIC-based
clocks to exhibit comparable performance to their
discovery arrays [44, 46].

Measurement of risk factors
We used a questionnaire to determine participants’
chronological age (years), sex (male or female), formal
educational attainment (none, primary, secondary or ter-
tiary), and residence (Amani-Ménou, Taabo-Cité or
Tokohiri). Taabo-Cité is an urban area relative to
Amani-Menou and Tokohiri, which are more rural.
Wealth or asset index was estimated for each partici-
pant—in the context of the HDSS—by applying principal
component analysis to property or possessions, and
housing characteristics of the participants’ households
[37]. Wealth index is a reliable and stable proxy for con-
sumption and therefore economic status in general
terms [47, 48].
Lifestyle factors included smoking status, alcohol

consumption and physical activity. Smoking status
was determined as never-smoker (lifetime of non-
smoking), former smoker (smoked in the past but
quit) and current smoker (presently smoked tobacco
products). Alcohol consumption was determined using
the AUDIT-C (Alcohol Use Disorder Identification
Test-Consumption) questionnaire, which scores alco-
hol consumption and frequency (0–12) to identify
risky consumption. Participants were classified as low
risk (AUDIT-C score 0–3 for males and 0–2 for fe-
males), medium risk (4–9 for males and 3–9 for fe-
males), and high risk (10–12) [49]. Physical activity
was measured as self-reported number of min per
week of engagement in at least 10 min of moderate
and vigorous activities covering transport, leisure and
occupational activities [50]. Body weight (kg), height
(cm) and waist circumference (cm) were measured to
the nearest 0.1 unit. BMI was calculated as the ratio
of body weight and height-squared (kg·m−2), and par-
ticipants were classified into underweight (< 18.5),
normal weight (18.5–24.9), overweight (25–29.9) and
obese (≥ 30).
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Measurement and definition of metabolic syndrome
phenotypes
Central obesity was defined as waist circumference ≥ 94
cm in males and ≥ 80 cm in females. Blood pressure was
measured three times, on the left arm, in a sitting pos-
ition, and the mean of the last two measures noted.
Raised blood pressure was defined as mean blood pres-
sure ≥ 135/80 mmHg or use of blood pressure-lowering
medication. Fasting glucose and lipid profile were mea-
sured using the point-of-care Alere AS100 system (and
corresponding cartridges from same production batch),
which exhibited good performance in tropical settings
[36, 51, 52]. Impaired fasting glucose was defined as hav-
ing fasting glucose ≥ 5.6 or use of glucose-lowering
medication. Low HDL was defined as < 1.0 mmol·L−1

and < 1.3 mmol·L−1 in males and females, respectively,
whereas high triglycerides were defined as ≥ 1.7
mmol·L−1. We defined MetS severity as an additive score
of five components where a score of zero or five indi-
cates absence or presence of all five components, re-
spectively. We also defined presence and absence of
MetS as scoring ≥ 3 and < 3 on the MetS severity scale
[53].

Statistical analysis
Descriptive statistics
Statistical analyses were performed in Stata version 16
(Stata Corporation; College Station, TX, USA). We ex-
amined the EAA parameters for extreme outliers defined
as observations greater than three interquartile range be-
yond the interquartile range of each parameter. We
summarized the characteristics of included participants,
using means and SD for continuous variables, and fre-
quencies for categorical variables.
To evaluate the performance of the epigenetic clocks,

we calculated the EAD (absolute difference between epi-
genetic and chronological age) and the Bland-Altman’s
95% limits of agreement [54]. We also tested Lin’s con-
cordance correlations between epigenetic and chrono-
logical age. Lin’s concordance correlation coefficient
combines the tightness of the observations to the line of
best fit, and the nearness of the line of best fit to the
identity line (where Y = X) of perfect concordance [55,
56]. We tested Pearson’s correlations between chrono-
logical age and (i) epigenetic age; (ii) EAD; and (iii) EAA.
Finally, we tested the robustness of these performance
indicators limited to apparently healthy participants (i.e.,
non-smokers with no MetS feature).

Associations between sociodemographic and lifestyle
factors, and EAA
We performed hierarchical multivariable regressions to
assess the association between sociodemographic and
lifestyle factors and each of the four age acceleration

parameters. Here, we estimated the minimally biased ef-
fect size for each block of covariates by excluding as
much as possible, the potential mediators of the vari-
ables in the covariate block. As shown in Fig. 1, we esti-
mated the effects of four cumulative blocks of covariates
including:

i. Model 1: chronological age and sex;
ii. Model 2: model 1 + educational level, household

wealth index and urbanization (socioeconomic);
iii. Model 3: model 2 + smoking, alcohol consumption

and physical activity (lifestyle) and
iv. Model 4: model 3 + BMI (secondary lifestyle).

We report the effect estimate of a covariate as the ef-
fect in the model containing the block at the highest
hierarchy. For instance, the effect estimate of sex, wealth,
alcohol, and BMI will be derived from models 1, 2, 3
and 4, respectively.
We primarily modelled covariates in two categories:

sex (male vs. female), educational level (secondary and
tertiary vs. others), wealth index (richest third vs. lower
two-thirds), urbanization (urban vs. rural), smoking
(former and current smokers vs. never smokers), alcohol
consumption (high risk vs. low risk), physical activity
(lowest third vs. upper two-thirds) and BMI (≥ 25 vs. <
25 kg m−2). We additionally tested polynomials of phys-
ical activity (model 3) and BMI (model 4) for potential
non-linearity in relation to EAA. We performed collin-
earity tests for the fully adjusted EEA models and ob-
served minimal evidence for multi-collinearity (variance
inflation factor, VIF range 1.1–1.9).
We further performed subgroup analyses by age group

(cut-off at median value; > 41 vs. ≤ 41 years), sex and
urbanization as the major potential modifiers and tested
between-group differences via multiplicative interaction
terms between the EAA and each modifier in the model.
In sensitivity analyses, we tested robustness of PhenoAA
and GrimAA effect estimates to adjustment for
leukocyte proportions, and performed partial Spearman
correlations of the covariates with each DNAm surrogate
component of GrimAA. Results of regression analyses
are presented as changes in mean EAA and their 95%
CIs in relation to each risk factor.

Associations between EAA and cardio-metabolic phenotypes
We regressed each of the cardiometabolic phenotypes—
MetS, single components and severity score—on the
standardized values of each EAA. We used binomial lo-
gistic regression for MetS and each component, and or-
dinal logistic regression for MetS severity. In these
models, we had two levels of main covariate adjust-
ments. First, we adjusted for chronological age. Second,
we additionally adjusted for sex, socioeconomic and
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lifestyle factors corresponding to model 3 in the EAA
outcome model. In sensitivity analyses, we additionally
adjusted for BMI (all EAA) and leukocyte proportions
(PhenoAA and GrimAA). We also regressed MetS out-
comes on each DNAm surrogate of plasma protein com-
ponents of GrimAA independently of demographic,
socioeconomic and lifestyle factors, to identify specific
associations with GrimAA components. We also per-
formed collinearity tests for the fully adjusted MetS
models and observed minimal evidence for multi-
collinearity (VIF range 1.1–1.8).
We also tested effect modification by age group, sex

and urbanization using the primary MetS logistic
models, and tested between-group differences via multi-
plicative interaction terms between the EAA and each
modifier in the model. Results of regression analyses are
presented as ORs of MetS (or components) and 95% CIs
in relation to each EAA measure.
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