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Abstract 

Background: Distinct cell types can be identified by their DNA methylation patterns. Much research over the last 
decade has focused on DNA methylation changes in cancer or the use of cell‑free circulating DNA in plasma to 
identify damaged tissue in cases of trauma or organ transplantation. However, there has been little research into the 
differential methylation patterns between leukocytes and other tissues and how they can be used as a detection tool 
for immune activity in a range of contexts.

Results: We have identified several loci that are fully methylated in leukocytes but virtually devoid of methylation in a 
range of other mesoderm‑, ectoderm‑, and endoderm‑derived tissues. We validated these biomarkers using ampli‑
con‑bisulphite‑sequencing on saliva and in vitro mixing of peripheral blood mononuclear cells and intestinal orga‑
noid cells combined at a defined range of ratios. Interestingly, these methylation biomarkers have previously been 
identified as altered in various inflammatory diseases, including Alzheimer disease, inflammatory bowel disease, and 
psoriasis. We hypothesise this is due to leukocyte infiltration rather than being a feature of the diseased cells them‑
selves. Moreover, we show a positive linear relationship between infiltrating leukocytes and DNA methylation levels at 
the HOXA3 locus in six cancer types, indicative of further immune cell infiltration.

Conclusions: Our data emphasise the importance of considering cellular composition when undertaking DNA 
methylation analysis and demonstrate the feasibility of developing new diagnostic tests to detect inflammation and 
immune cell infiltration.
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Introduction
Many epigenetic processes are used to modulate gene 
expression; however, DNA methylation is unique because 
it can transmit biological memory over long periods of 
time. In vertebrates, the majority of DNA methylation is 
found on cytosine, specifically at cytosine-guanine (CpG) 
dinucleotides. CpG is a palindromic sequence, and as 

such, methyltransferases, such as DNA methyltransferase 
1 (DNMT1), can maintain DNA methylation marks after 
DNA replication by copying methylation from the cyto-
sine on the template strand to the complementary cyto-
sine on the newly synthesised strand [1]. Because all cells 
in the body have essentially the same DNA sequence, the 
cell morphology and function are related to a particular 
combination of genes that are expressed or repressed. 
DNA methylation helps regulate gene expression (for 
example, by preventing transcription factors binding 
promoters and enhancers [2] or by recruitment of het-
erochromatin-associated proteins with methyl-binding 
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domains [3]), and thus, DNA methylation patterns con-
tribute to defining cellular identity. Accordingly, hierar-
chical clustering of whole-genome methylation analysis 
shows that closely related cell types cluster together [4], 
and many differentially methylated regions remain from 
earlier developmental cell identity decisions [5].

Unique cell-type-specific DNA methylation patterns 
can also be used as biomarkers to identify unknown 
cell-types in forensic and diagnostic settings. For exam-
ple, cell-free DNA (cfDNA) released from apoptotic and 
necrotic cells into the bloodstream can be collected with 
non-invasive blood sampling. Assaying cfDNA for can-
cer-specific DNA methylation patterns can then be used 
to detect, monitor, and prognose cancer [6, 7]. cfDNA 
methylation has also been used to track cell death follow-
ing traumatic injury or organ transplantation [8–10], and 
methylation analysis in blood samples has been used to 
quantify leukocyte subpopulations [11, 12], with applica-
tion to cancer methylome screening [13, 14].

Although these tissue-type deconvolution studies are 
powerful and useful in their own right, they rely upon 
array technology (e.g. Infinium HumanMethylation450 
BeadChip), whereby thousands of CpG sites are analysed 
simultaneously from a single sample. In contrast, rela-
tively simple diagnostic tests, such as those designed to 
detect inflammation and immune cell infiltration, need 
only to distinguish blood-derived cells such as leukocytes 
from other tissue types. As such, complex deconvolution 
from thousands of loci may not be required [4].

In this study, we first aimed to identify genomic regions 
that can differentiate between leukocytes and all other 
cell types and validate them with the use of a rapid, high-
throughput bisulphite-PCR assay (Fig.  1). Secondly, we 
aimed to benchmark these loci against previously pub-
lished datasets to assess how leukocyte-specific methyla-
tion patterns are reported in methylation disease studies. 
We find two regions within the HOXA3 and MAP4K1 
loci that are highly methylated in blood-derived cells but 
unmethylated in all other tissues examined. Following 
validation using saliva and artificially created DNA mix-
tures, we found these sites are suitable for quantifying the 
proportion of leukocytes within heterogeneous tissues.

Results
Biomarker discovery
To adequately identify candidate leukocyte-specific DNA 
methylation biomarkers, we took advantage of the Moss 
et al. [10] methylation atlas (GEO accession: GSE122126), 
whereby Illumina Infinium HumanMethylation450 Bead-
Chip array data was created for blood cell preparations, 
along with a further nine different tissue types that were 
supposedly free of vasculature and immune populations. 
For each CpG site in the Moss dataset (423,213 in total), 

Fig. 1 Flowchart of study approach. Biomarker discovery was 
performed with the Moss et al. [10] and Reinius et al. [11] datasets. 
Individual CpG cites with a difference in β‑value between leukocytes 
and all tissues ≥ 0.8 were identified and termed ls‑DMPs. ls‑DMPs 
outside of CpG islands were filtered out. We validated each biomarker 
with (1) in vitro mixes of defined PBMC and intestinal organoid DNA, 
and (2) hertogeneous saliva samples. To assess how ls‑DMPs are 
reported in the literature, we gathered a range of datasets examining 
methylation in inflammatory disease and determined the number 
of reported ls‑DMPs. Lastly, to compare our ls‑DMPs to current 
deconvolution methods, we used the TCGA Pan‑Cancer atlas to 
assess the correlation between ls‑DMP methylation and the number 
of leukocytes in each sample
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we calculated a combined mean DNA methylation level 
(expressed as a β-value between 0 and 1) for all non-
leukocyte cells and compared it to the DNA methyla-
tion level for leukocytes. The difference between the two 
means was used to inform the selection of potential bio-
markers; CpG sites with a difference of ≥ 0.8 were consid-
ered differently methylated (henceforth, we will refer to 
these as leukocyte-specific differentially methylated posi-
tions, or ls-DMPs). In total, 77 ls-DMPs were identified 
(Table S1). Of these, 19 were highly methylated (meth-
ylation > 89%) in leukocytes, while 58 were unmethylated 

(methylation < 8%). Most of the highly methylated ls-
DMPs (15 out of 19) were found in CpG islands (CGIs) 
and within gene bodies (12 out of 19), while most of the 
unmethylated sites are in open seas (45 out of 58) (Fig-
ure S1a-d). The CGI-located candidate biomarkers were 
of particular interest because they were likely flanked by 
additional CpGs providing similar discriminatory power. 
Subsequently, we only focused on CpG sites located 
within CGIs (Table 1).

We decided to focus on the only two CGIs that con-
tained multiple ls-DMPs. The first was within the 

Table 1 Top ls‑DMPs from the Moss dataset located in CpG islands

List of the top ls-DMP sites identified from the Moss et al. [10] that are within CpG islands. Δ β-value is expressed as the absolute number of the calculated difference. 
CpG sites within the HOXA3 and MAP4K1 loci have been highlighted
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HOXA3 locus (chr7:27,153,187–27,153,647, hg19) and 
contained two ls-DMPs (cg00921266 and cg08101036). 
This region also showed strong evolutionary conserva-
tion—bisulphite-sequencing in the orthologous mouse 
region showed a similar methylation pattern (data pub-
lished by Hon et al. [5]; Figure S2). The second region 
of interest was within a CGI in exon 26 of MAP4K1 
(chr19:39,086,878–39,087,304, hg19) and also con-
tained two ls-DMPs, cg05258935 and cg02798280. The 
top CpGs at each locus (cg00921266 and cg05258935) 
showed similar patterns; very high DNA methylation 
levels in leukocytes; moderately low methylation lev-
els in adipocytes, lung epithelial cells, and vascular 
endothelial cells; and virtually no DNA methylation in 

colonic epithelium, cortical neurons, hepatocytes, and 
various cells types of the pancreas (Fig. 2a).

To further explore the biological basis for these bio-
markers, we examined leukocyte sub-population meth-
ylation using previously published array-based datasets 
[11, 15]. These data show that all adult leukocyte sub-
populations are highly methylated at cg05258935 and 
cg00921266 (Fig.  2b), albeit with a slight reduction in 
methylation in  CD34+ stem cells of adult bone mar-
row (Fig.  2c). In contrast, foetal liver  CD34+ cells 
showed significant demethylation compared to adult 
 CD34+ (cg00921266, p = 2.3e−5; cg05258935, p = 5.3e−9) 
(Fig.  2c). Together, these data suggest that ls-DMPs 
in HOXA3 and MAP4K1 start development in an 

Fig. 2 Marker identification. a Bar chart of methylation as a β‑value for cg00921266 (HOXA3, green) and cg0528935 (MAP4K1, purple) in the 10 
isolated cell populations from the Moss et al. [10] dataset (GEO accession: GSE122126). b Dot plot of methylation as a β‑value for cg00921266 
(HOXA3, green) and cg0528935 (MAP4K1, purple) in 10 different immune cell populations from the Reinius et al. [11] dataset (GEO accession: 
GSE35069). c Dot plot of methylation as a β‑value for cg00921266 (HOXA3, green) and cg0528935 (MAP4K1, purple) in CD34.+ haematopoietic cells 
from adult bone marrow and foetal liver



Page 5 of 18Dunnet et al. Epigenetics Communications             (2022) 2:5  

unmodified state, accumulate methylation specifically in 
the foetal stem cells of the haematopoietic lineage, and 
maintain this throughout subsequent differentiation, 
development, and ageing.

Accurate prediction of cell‑of‑origin identity using DNA 
methylation
While the datasets identifying these biomarkers are 
undoubtedly valuable, array technology is limited as a 
diagnostic platform for several reasons. Firstly, arrays 
are relatively expensive on a per-sample basis. Second, 
they rely on single CpG probes to assay methylation at a 
given site, which risks under-sampling methylation at a 
given biomarker region. Moreover, array technologies are 
unable to give information on a single-molecule level. To 
address this, we decided to pursue a more cost-effective 
amplicon-bisulphite-sequencing test that takes advantage 
of the fact that closely related CpGs often share the same 
DNA methylation state (i.e. methylated or unmethyl-
ated). This is because by increasing the number of simul-
taneously analysed CpG sites, we increase the resolution 
and discriminatory power for methylation-based bio-
markers [9].

To quantify methylation at the HOXA3 and MAP4K 
loci of interest, we adapted a dual-indexing, four-primer 
PCR-based assay [16] (see the “Methods” section for an 
in-depth description). First, we aimed to validate each 
region of interest and assess the adapted amplicon-
bisulphite-sequencing assay’s ability to measure DNA 
methylation levels accurately. Specifically, we wanted to 
determine if (a) there is amplification bias towards meth-
ylated or unmethylated strands and (b) the ability of the 
assay to discern minority cell types. To accomplish this, 
we sourced purified DNA from peripheral blood mono-
nuclear cells (PBMCs) as these represent a nucleated 
cellular portion of blood and should not contain large 
amounts of serum-derived cfDNA from other tissues. To 
prepare DNA from cells without any leukocyte or blood-
derived origins, we sourced cultured intestinal organoid 
DNA. Intestinal organoids are grown in precise 3-dimen-
sional culture conditions that support the growth of 
 Lrg5+ stem cells and their derivatives [17], therefore 
avoiding contamination of blood and vasculature. We 
then mixed the purified DNA from each source in seven 
precise quantities (Fig. 3a) and subjected each admixture 
to bisulphite-conversion and the PCR assay.

The pure intestinal organoid DNA had  a mean 
total DNA methylation of 0.83% (standard deviation 
(sd) = 0.69%) and 1.02% (sd = 0.65%) for HOXA3 and 
MAP4K1, respectively. In contrast, pure PBMC DNA 
had a mean total DNA methylation of 94.0% (sd = 0.30%) 
and 93.1% (sd = 0.21%) for HOXA3 and MAP4K1, respec-
tively. We visualised the DNA methylation of individual 

reads using heatmaps, where reads run across the row, 
and each column represents individual CpG meth-
ylation status (Fig. 3b, Figure S3a, Figure S4, Figure S5). 
For HOXA3, only a small fraction of reads in the intes-
tinal organoid and PBMC samples were fully methyl-
ated (0.37%) or fully demethylated (0.69%), respectively; 
interestingly, minimal reads contained moderate DNA 
methylation.

We used a binomial logistic regression model (Figure 
S6a, Figure  S6c) to produce a density plot of the num-
ber of methylated cytosine per read for the HOXA3 and 
MAP4K1 loci (Fig.  3c, Figure S3b). The two cell types 
cluster separately from one another at both loci. We 
sought to classify the reads from the mixed samples 
using their DNA methylation pattern. To do this, we 
constructed a receiver operating characteristic (ROC) 
curve and determined the optimal classification thresh-
old using the ‘pROC’ package in R (Figure S6b and S6d). 
This model determined that HOXA3 amplicons should 
be classified as intestinal organoid derived if ≤ 3 of eleven 
CpGs are methylated or if ≥ 4 are methylated as PBMC 
derived (TPR = 0.993, FPR = 0.004). For the MAP4K1 
amplicons, if ≤ 2 of eight CpGs were methylated the read 
was classified as intestinal organoid derived, while ≥ 3 as 
PBMC derived (TPR = 0.999, FPR = 6.37e − 05). How-
ever, because the level of DNA methylation was effec-
tively opposite for each cell type and minimal reads 
contained moderate levels of DNA methylation, we 
decided to use a more stringent classification system for 
each amplicon. Here, a DNA fragment from the HOXA3 
amplicon was classified as intestinal organoid derived if 
it had ≤ 3 methylated CpGs on it, or PBMC if it was ≥ 6 
methylated CpGs, with any reads in between remaining 
unclassified. Likewise, for the MAP4K1 amplicon, a read 
would be classified as intestinal organoid derived if ≤ 2 
CpGs were methylated or of PBMC origin if ≥ 6 CpGs 
were methylated, with any reads in between remaining 
unclassified.

We applied the classification system to each mixed 
sample, and both loci showed a remarkable correlation to 
the amount of input DNA from each cell type (HOXA3: 
R2 = 0.999, MAP4K1: R2 = 0.9985) (Fig. 3c, d, Figure S3c-
d). Our results also suggest that the specific bisulphite 
PCR primers we used do not have any significant bias 
towards highly methylated or unmethylated reads and 
are highly accurate.

Salivary leukocytes can be deconvoluted from buccal 
epithelial cells
To further validate these biomarkers with a heterog-
enous, uncultured tissue sample, we sourced saliva 
from human donors. We chose saliva because collec-
tion is non-invasive, and it contains good numbers of 
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Fig. 3 Deconvolution of in vitro mixed PBMC and intestinal organoid DNA based on HOXA3 DNA methylation. a The ratio of Intestinal organoid 
to PBMC DNA used in the in vitro mixes. b Example methylation heatmap outputs of the HOXA3 amplicon for PBMCs (left), 50:50 mix (centre), 
and intestinal organoid (right). Each row represents an individual read, and each column is a CpG site within the amplicon; column names refer 
to the CpG position in the read. c Density plot for the number of methylated CpG sites per read in pure intestinal organoid (blue) and pure PBMC 
(red) samples. The y‑axis represents the probability per unit on the x‑axis such that the area under the curve for a specific interval is equal to the 
probability of the number of methylated CpGs in that interval. Bandwidth is 0.45. d Stacked bar chart of the proportion of classified for each sample 
type. Reads were classified as intestinal organoid (blue), PBMC (red), or unclassified (grey). e Scatter plot of observed read classification vs expected 
read classification for intestinal organoid and PBMC
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leukocytes secreted from the oral gingiva in addition 
to non-leukocyte buccal cells sloughed from the cheek 
epithelium [18]. Buccal cells are large and flat compared 
to oral leukocytes and are thus easy to identify using 
standard histological techniques [18]. Furthermore, 
determining the proportion of salivary leukocytes and 
buccal epithelium with DNA methylation may be valu-
able to researchers using saliva samples for epigenetic-
based epidemiology studies [19].

To confirm that DNA extracted from leukocytes is 
methylated and buccal cells unmethylated, we used 
cellular filtration and flow cytometry to purify respec-
tive cell populations from saliva samples. Histologi-
cal examination of purified cell populations revealed 
a predicted mean purity of 97.1% for buccal cells and 
99.4% for leukocytes (Fig. 4a, b). After performing the 
dual index bisulphite PCR assay at both the HOXA3 
and MAP4K1 loci, the vast majority of reads had the 
expected methylation pattern; however, there was a 
small sub-population of reads with a largely unmethyl-
ated profile in the sorted leukocyte population (2.7% of 
reads in HOXA3; 2.8% in MAP4K1) and vice versa for 
the buccal sorted population (2.3% of reads in HOXA3; 
2.6% in MAP4K1) (Fig.  4d, Figure S7a, Figure S8, Fig-
ure S9). We suspect these discrepancies are due to the 
imperfect isolation of cells as observed in the manual 
cell counts. We performed the same binomial regres-
sion analysis using the isolated buccal and leukocyte 
cell populations to produce methylation density plots 
(Fig.  4e, Figure S7b, Figure S10). In this context, the 
classification cut-off for the two cell types differed from 
PBMC and intestinal organoid cells. For the HOXA3 
amplicon the cut-off was set as buccal epithelium if 
five or less CpG sites were methylated or as salivary 
leukocyte if six or more CpG sites were methylated 
(TPR = 0.969, FPR = 0.023). For the MAP4K1 ampli-
con, reads were classified as buccal epithelium if three 
or less CpGs were methylated or as a salivary leuko-
cyte if four or more were methylated (TPR = 0.969, 
FPR = 0.025).

Having confirmed the relationship between meth-
ylation of HOXA3 and MAPK4 in oral leukocytes and 
buccal cells, we then sought to quantify their propor-
tion in a mixed saliva sample. The relative proportion 
of cells in a heterogenous saliva sample was initially 
assessed using histological examination, and out of a 
sample of 100 cells, 38% were salivary leukocytes and 
62% buccal epithelium (Fig.  4a). Following bisulphite 
conversion and PCR assay (Fig.  4f, Figure S7) of DNA 
purified from this same sample, we found that the pre-
dicted number of leukocytes was 38.1% (sd = 2.5) and 
39.3% (sd = 1.5) for HOXA3 and MAP4K1, respectively. 
A linear regression model suggests a high degree of 

accuracy  (R2
HOXA3 = 0.998,  R2

MAP4K1 = 0.997) (Fig.  4g, 
Figure S7c). These findings indicate that HOXA3 and 
MAP4K1 DNA methylation patterns can accurately 
deconvolute leukocytes and buccal epithelial cells from 
a mixed saliva sample.

Independent validation of ls‑DMPs in inflammatory 
disease
Immune cells drive inflammation, and as such, if the ls-
DMPs we identified were valid, we would expect them 
to be overrepresented in methylation datasets featuring 
inflammatory disease tissue, compared to controls. Using 
the online database ‘EWAS Atlas’ (https:// ngdc. cncb. ac. 
cn/ ewas/ atlas) [20], we discovered 28 associated traits 
from 35 publications (Table S2) that were associated with 
our ls-DMPs. The top three traits with the highest num-
ber overlapping CpG sites were psoriasis (33 DMPs iden-
tified by Chandra et al. [21]), inflammatory bowel disease 
(IBD) (12 DMPs identified by Agliata et al. [22]), and Alz-
heimer disease (AD) (12 DMPs identified over three pub-
lications [23–25]).

While the EWAS Atlas is an excellent resource, it is lim-
ited by the small number of publications in the database 
(910 at the time of analysis). For that reason, we searched 
the PubMed database for studies that examined differ-
ences in DNA methylation in cases vs controls of the 
aforementioned traits (Table 2 and Table S3). In total, we 
found three publications on psoriasis, two on IBD, and 
seven on AD. Of the 11 publications utilising the Illumina 
Infinium HumanMethylation450 BeadChip array plat-
form, we found 7 featured at least one differentially meth-
ylated region overlapping our ls-DMPs—cg00921266 
and cg08101036 from the HOXA3 locus were present in 
nine and four datasets, respectively, while cg05258935 
and cg02798280 from the MAP4K1 locus were present 
in three and four datasets, respectively. Additionally, the 
HOXA3 and MAP4K1 loci were represented in each dis-
ease trait at least once (Table S4 and Table S5).

The HOXA3 locus was vastly over-represented in 
publications focusing on AD [23, 29, 30, 32, 34], with 
consistent reports of hypermethylation correlating with 
AD severity. For example, both De Jager et al. [32] and 
Smith et  al. [30] independently report a 48-kb region 
spanning the HOXA cluster from HOXA2 to HOXA6 
as hypermethylated with respect to Braak stage. We 
hypothesised that this signature resulted from infiltrat-
ing leukocytes to the AD brain, a phenomenon known 
to occur in the ageing human brain and mouse mod-
els of AD as the blood–brain barrier becomes leaky 
[35, 36]. We replicated the DMP discovery pipeline 
used by Smith et  al. [30] for the HOXA cluster (bot-
tom panel, Fig. 5b) and compared this to leukocyte and 
cortical neuron methylation in the Moss dataset (GEO 

https://ngdc.cncb.ac.cn/ewas/atlas
https://ngdc.cncb.ac.cn/ewas/atlas
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Fig. 4 Deconvolution of the cellular components of saliva. a–c light microscopy images of H&E stained a salivary leukocytes (salivary leukocytes 
are labelled i), b buccal epithelial cells, and c mixed saliva (mononuclear cells are labelled ii, and polymorphonuclear cells are labelled iii). d Example 
of methylation heatmaps for isolated salivary leukocytes and buccal epithelium. Each row represents an individual read, and each column is a CpG 
site within the amplicon; column names refer to the CpG position in the read. e Density plot (as in Fig. 3c) for the number of methylated CpG sites 
per read in isolated buccal epithelium (blue) and salivary leukocyte (red) samples (bandwidth = 0.45). f Methylation heatmaps (as explained in 
Fig. 3b) for mixed saliva samples performed in triplicate. g Scatter plot of observed read classification from methylation analysis vs expected read 
classification from microscopic measurement of the proportion of salivary leukocytes
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accession: GSE122126). Overlaying the plots clearly 
shows that leukocytes possess a high degree of DNA 
methylation at the HOXA locus, where cortical neu-
rons do not. This difference in DNA methylation mir-
rors the exact genomic location of hypermethylation 
present in AD, suggesting a high degree of correlation 
between the two observations (Fig.  5b). Indeed, com-
paring cortical neurons and leukocytes from the Moss 
dataset shows that five ls-DMPs within the two HOXA3 
CGIs previously described in Table 1 (chr7:27,153,187–
27,153,647 and chr7:27,154,999–27,155,426) have 
β-value differences of ≥ 0.9 (Table S6). Assuming we 
could extend the principles of our bisulphite-sequenc-
ing test to array data, we performed a simple immune 
cell quantification with Braak stage 0 and six samples 
from the Smith et  al. [30] data using cg00921266. We 
calculate that as a result of changes in a Braak stage 6 
brain, an additional 13.9% (sd = 6.6%) of total cells are 
leukocyte-derived. (Figure S11).

Interestingly, many of the publications we examined 
did not even mention leukocyte infiltration as a con-
founding factor in their quest to find disease biomarkers, 
despite examining inflammatory diseases [21, 26, 29–
31]. Others mentioned leukocyte infiltration as a possi-
bility or discussed cellular heterogeneity [22, 23, 28, 32, 
34] but did not control for this variability. In some cases, 

this occurred in meta-analyses where the authors exam-
ined previously collected data and conducting additional 
experimental controls was not possible [22, 23, 34]. 
Only one publication investigated the proportion of leu-
kocytes in their samples; however, these data were not 
shown [27].

In summary, the presence of many ls-DMPs in the 
methylation datasets of multiple inflammatory diseases 
further validates their usefulness as pan-leukocyte bio-
markers. Our analysis also highlights the minimal use of 
controls for cellular composition  these studies employed. 
Lastly, we show a strong correlation between the previ-
ously unexplained hypermethylation of the HOXA clus-
ter in AD and the DNA methylation differences between 
leukocytes and brain tissue. We suggest that leukocyte 
infiltration is driving the change in methylation rather 
than the alteration in the methylation status of resident 
cell types.

Comparisons to immune cell deconvolution techniques 
in cancer
The immune system has a complex and key role in 
responding to tumours, and in some cases, inflammation 
can bring about tumourigenesis [13, 37]. A landmark study 
by Thorsson et  al. [13] quantified the immune response 
to a large array of different cancer types. Thorsson et  al. 

Table 2 List of publications used in the analysis of ls‑DMPs and inflammatory disease

List of publications used in the analysis of ls-DMPs and inflammatory disease. IDB inflammatory bowel disease, AD Alzheimer disease, IEC intestinal epithelial cells, PFC 
prefrontal cortex, STG superior temporal gyrus, IFG inferior frontal gyrus, MTG middle temporal gyrus, EC entorhinal cortex

Publication Trait Tissue Data type HOXA3 or MAP4K1 included

Chandra et al., 2018 [21] Psoriasis Skin 450 k methylation bead array HOXA3

Zhou et al., 2015 [26] Psoriasis Skin 450 k methylation bead array HOXA3 and MAP4K1

Verma et al., 2018 [27] Psoriasis Skin Reduced representation bisulfite sequencing HOXA3

Agliata et al., 2020 [22] IBD Colonic mucosa and purified IEC 450 k methylation bead array meta‑analysis HOXA3 and MAP4K1

Harris et al., 2020 [28] IBD Colonic mucosa 450 k methylation bead array HOXA3

Zhang et al., 2020 [23] AD PFC 450 k methylation bead array meta‑analysis HOXA3 and MAP4K1

Gasparoni et al., 2018 [29] AD PFC 450 k methylation bead array HOXA3 and MAP4K1

Smith et al., 2018 [30] AD PFC and STG 450 k methylation bead array meta‑analysis HOXA3 and MAP4K1

Li et al., 2020 [31] AD STG and IFG EPIC array HOXA3

Jager et al., 2014 [32] AD PFC 450 k methylation bead array HOXA3

Altuna et al., 2019 [33] AD Hippocampus 450 k methylation bead array and bisulfite 
sequencing

HOXA3 and MAP4K1

Smith et al., 2021 [34] AD PFC, STG, MTG, EC, Cerebellum 450 k methylation bead array meta‑analysis HOXA3 and MAP4K1

(See figure on next page.)
Fig. 5 HOXA3 and MAP4K1 in inflammatory disease. a Flow chart of online data selection methodology. b Methylation expressed as a β‑value for 
leukocytes (first panel, red), cortical neurons (second panel, blue), and the difference in β‑value between the two (third panel, black) for the HOXA 
cluster. Data from the Moss et al. [10] dataset GEO accession: (GSE122126). The bottom panel is a reconstructed mini‑Manhattan plot of the HOXA 
cluster methylation with respect to Braak stage classification in Alzheimer disease. P‑values were generated using a linear regression model of DNA 
methylation with respect to each Braak stage classification (0–6). Red circles indicate an increase in methylation (β‑value) by ≥ 0.1 as Braak stage 
increases, green a decrease ≥ 0.1, and black a change < 0.1. Data from Smith et al. [30] (GEO accession: GSE80970)
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Fig. 5 (See legend on previous page.)



Page 11 of 18Dunnet et al. Epigenetics Communications             (2022) 2:5  

used a relativity complex deconvolution method requiring 
the Illumina Infinium HumanMethylation450 BeadChip 
array; we asked if the ls-DMPs identified in our study could 
predict the proportion of leukocyte populations within 
non-blood derived tumours without the use of array tech-
nology. Using the TCGA database, we compared the DNA 
methylation of cg00921266 (HOXA3) to the leukocyte 
estimate by Thorsson et  al. [13] for over 8000 individual 
tumour samples from 30 different tumour types (Fig. 6a). 
A pan-cancer comparison showed an overall poor corre-
lation (R2 = 0.286); nevertheless, many data points cluster 
in a 1:1 linear relationship between the leukocyte estimate 
and cg00921266 methylation. The remaining data sit above 
this line, suggesting that the number of leukocytes in the 
tumour sets a baseline DNA methylation at this locus, that 
epimutations are frequent at the HOXA3 locus in cancer, 
and that these are virtually all hypermethylation events. 
Breast invasive carcinoma, colon adenocarcinoma, hepa-
tocellular carcinoma, and cutaneous melanoma are indi-
vidual examples of this (Figure S12). This is consistent with 
other reports highlighting hypermethylation at the HOXA 
cluster genes in cancer [38–41]. While the correlation 
between cg00921266 and the leukocyte estimate by Thors-
son et al. was difficult to see for many individual tumours, 
six tumour types (uveal melanoma (p-value = 9.70e − 11), 
thyroid carcinoma (p-value = 2.32e − 08), testicular germ 
cell tumours (p-value = 5.12e − 08), urothelial blad-
der carcinoma (p-value = 9.5e − 08), mesothelioma 
(p-value = 6.28e − 21), and ovarian serous cystadenocar-
cinoma (p-value = 1.31e − 03)) showed a remarkable 1:1 
relationship (Fig. 6b–g). These data suggest that for at least 
some cancer types, the methylation of a single CpG site 
(cg00921266) is all that is required for an accurate determi-
nation of leukocyte infiltration to the tumour.

Discussion
Using array data, we identified several CpG sites in the 
HOXA3 and MAP4K1 loci as specifically methylated in 
all major blood cell populations (Fig.  2b). We performed 
validation experiments using PBMCs and salivary leuko-
cytes; PBMCs are primarily comprised of  CD4+ and  CD8+ 
T-cells, and to a lesser extent, monocytes, B-cells, and nat-
ural killer cells [42], while 95% of salivary leukocytes are 
neutrophils [18]. Both of these tissue types showed high 
methylation in the leukocyte-derived portions. Therefore, 
we have identified and validated two regions with unique 

DNA methylation patterns across the majority of mature 
blood-derived cell types.

The biological significance of HOXA3 and MAP4K1 DNA 
methylation in blood‑derived cells
Although biomarkers do not need to reflect function, cor-
relation with biological function can provide confidence 
in a marker. HOX genes are a highly conserved family of 
transcription factors involved in haematopoiesis, particu-
larly of myeloid committed cells [43–45]. The development 
of definitive haematopoietic cells occurs in the foetal aorta, 
whereby a transition from endothelium to haematopoietic 
stem cells occurs [46]. Studies performed in mice show 
that the medial to late HOXA genes HOXA5, HOXA7, 
and HOXA9 are critical for endothelium to haematopoi-
etic stem cell transition [47], and HOXA10 is responsible 
for differentiation towards the myeloid and erythroid lin-
eages [48]. HOXA3, unlike the other genes in the HOXA 
cluster, acts to maintain an endothelial phenotype, and its 
expression in haematopoietic stem cells can drive them 
back towards an endothelial lineage [49]. Collectively, these 
data suggest that while medial and late HOXA genes drive 
the differentiation of haematopoietic stem cells, the early 
HOXA gene, HOXA3, inhibits this differentiation. The 
increased DNA methylation observed in the early HOXA 
genes relative to the medial and late genes (Fig.  5b, top 
panel) may reflect the silencing of HOXA3 during haema-
topoietic stem cell differentiation.

MAP4K1 is a serine/threonine kinase heavily involved 
in JNK signalling and NF- κB regulation [50]. MAP4K1 
appears to dampen the activation of T-cell and B-cell 
receptors by phosphorylating and inhibiting the activ-
ity of important signalling molecules such as SLP-76 or 
BLNK [50]; additionally, MAP4K1 possesses a dual role 
in immune cell adhesion, inhibiting the adhesion of lym-
phocytes while enhancing that of neutrophils [50]. The 
differentially methylated region within the MAP4K1 locus 
is found within the gene body, while the promotor region 
is consistently unmethylated across cell types. This is con-
sistent with a recent study showing that most intragenic 
CGIs become methylated in association with transcrip-
tion [51]. Tissue expression data from the Human Protein 
Atlas [52] (http:// www. prote inatl as. org) of MAP4K1 shows 
that it is highly expressed in blood, lymphoid, and gastro-
intestinal tissues; single-cell expression data show that 

Fig. 6 The relationship between cg00921266 methylation and the proportion of leukocytes in cancers. Scatterplots of cg00921266 DNA 
methylation (expressed as a β‑value vs a leukocyte estimate for a all cancers combined in the TCGA pan‑cancer dataset, b thyroid carcinoma, c 
bladder urothelial carcinoma, d mesothelioma, e testicular germ cell tumours, f uveal melanoma, and g ovarian serous cystadenocarcinoma. Data 
was obtained from the TCGA Pan‑cancer atlas publication page (https:// gdc. cancer. gov/ about‑ data/ publi catio ns/ panca natlas)

(See figure on next page.)

http://www.proteinatlas.org
https://gdc.cancer.gov/about-data/publications/pancanatlas
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Fig. 6 (See legend on previous page.)
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gastrointestinal tract expression is primarily from the result 
of resident immune cells.

Overall, there is evidence to suggest leukocyte-specific 
DNA methylation patterns at HOXA3 and MAP4K1 have 
a function within a biological context and is consistent 
with the finding that methylation is deposited at these two 
sites early in haematopoietic stem cell development, possi-
bly before bone marrow control of haematopoiesis, and is 
maintained throughout maturation to adult cells (Fig. 2c).

Deconvolution of the cellular composition in saliva
Saliva is a widely used specimen type for epigenetic epide-
miology studies because it is non-invasive, is easily stored 
for an extended period, and contains ample human DNA 
[19, 53]. However, saliva-based studies are not without 
their limitations. A recent review by Langie et al. [53] dis-
cusses how the collection method greatly influences the 
sample’s composition. Additionally, the age of individuals 
also significantly impacts sample heterogeneity [18].

Saliva heterogeneity is a substantial hurdle for epi-
genetic researchers; DNA methylation differences may 
reflect the typical biological differences between cell 
types rather than a disease biomarker. Current cellu-
lar deconvolution methods attempt to do this bioinfor-
matically; however, most require reference datasets for 
comparison. Unfortunately, these methods can only be 
applied to whole-genome data, and the choice of refer-
ence data can significantly affect estimated cell popula-
tions [19, 53, 54]. Using our dual-index, 4-primer PCR 
assay, we have shown that it is possible to precisely deter-
mine the proportion of leukocytes to buccal cells in a 
saliva sample, potentially solving this issue.

Applications of HOXA3 and MAP4K1 DNA methylation 
in a disease context
We have shown that HOXA3 and MAP4K1 can accurately 
distinguish leukocytes in a mixed-cell system (e.g. intes-
tinal organoids vs PBMCs; salivary leukocytes vs buccal 
epithelium). Our experiments are a valid proof of concept 
that high-throughput bisulphite amplicon sequencing 
has excellent potential for ascertaining the proportion of 
leukocytes within a tissue sample, although it remains to 
be seen how it will perform in more complex biopsies or 
tissue systems. Nevertheless, detecting a large number of 
ls-DMPs in publications examining a range of inflamma-
tory diseases is encouraging in this regard (Fig. 5).

When we examined the presence of ls-DMPs in the 
data of others, each study reported at least one DMP in 
our list of ls-DMPs or reported a DMR that contained one 
of our ls-DMPs (Table S4 and Table S5). We also show 
that hypermethylation of the HOXA cluster in Braak 
stage 6 Alzheimer disease, which is commonly reported 
[23, 29–34], has a striking overlap with differences in 

DNA methylation between normal leukocytes and neu-
rons. The coinciding ls-DMPs, and particularly HOXA3, 
suggest that the difference in DNA methylation observed 
in these studies may result from infiltration of leukocytes 
rather than a change of DNA methylation in the endoge-
nous cells of affected tissues. We suggest using additional 
controls in case–control methylation experiments inves-
tigating inflammatory diseases to account for the pres-
ence of leukocytes. This may include (a) the use of pure 
cell populations sorted by flow cytometry or equivalent 
technology, (b) control samples with defined amounts of 
spiked in leukocyte DNA to simulate leukocyte infiltra-
tion, or (c) comparisons to methylation data from healthy 
tissues and leukocytes to identify cell-type-specific differ-
ences in DNA methylation.

We observed many ls-DMPs in methylation data-
sets examining IBD [22, 28]. Based on array data [10] 
(Fig.  2a), the amplicon-bisulphite-sequinning data we 
collected (Fig.  3), and whole genome sequencing data 
from mice [5] (HOXA3 only, Figure S2), both the HOXA3 
and MAP4K1 loci are virtually devoid of DNA methyla-
tion in the colonic epithelium. Therefore, it is conceivable 
that these loci could also be applied to stool samples as 
intestinal inflammation markers, in particular as a diag-
nostic tool for IBD. Clinicians categorise IBD as either 
Crohn’s disease or ulcerative colitis; both are character-
ised by a breakdown of the intestinal mucosal barrier 
resulting in chronic inflammation [55]. The gold stand-
ard for IBD diagnosis is a colonoscopy; however, this is 
an invasive and time-consuming procedure. Although it 
remains to be tested, these biomarkers may have utility in 
this setting and a fully developed diagnostic test may be 
an alternative to the current calprotectin assay [55, 56].

Using the pan-cancer data from the TCGA data-
base (30 cancers from over 8000 individuals), we have 
shown that DNA methylation from a single CpG site, 
cg00921266 (HOXA3), has a strong linear correlation 
with a total leukocyte estimate (previously published by 
Thorsson et  al. [13]) in six different cancer types: uveal 
melanoma, mesothelioma, testicular germ cell tumours, 
bladder urothelial carcinoma, ovarian serous cystadeno-
carcinoma, and thyroid carcinoma. Despite the heteroge-
neity of cancer cells within a singular tumour, let alone 
different tumour types [57, 58], our data suggest that dif-
ferential methylation patterns at the HOXA3 locus are 
maintained throughout carcinogenesis in these cancers 
[59]. As such, an amplicon-based approach test, such as 
that we have used here, or 450 K Illumina array data from 
just a single CpG (cg00921266), should provide accurate 
estimations of leukocyte proportion without complex 
deconvolution [4].
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Conclusions
In conclusion, we have validated two loci within the HOXA3 
and MAP4K1 regions using a high-throughput amplicon-
bisulphite-sequencing approach and accurately measured 
the proportion of leukocytes within two different contexts. 
This may be valuable in both a clinical and research set-
ting by removing the need for array-based deconvolution 
at a lower cost and higher throughput. Importantly, we dis-
covered that many of these ls-DMPs are reported in stud-
ies examining the methylation differences in inflammatory 
diseases, suggesting that the signal is the result of infiltrat-
ing leukocytes rather than a change in native cells. Lastly, we 
show that in a collection of six cancer types, the methyla-
tion of a single CpG site (cg00921266) at the HOXA3 locus 
correlates highly with a leukocyte estimate performed by 
Thorsson et al. [13], suggesting a single CpG site or ampli-
con may be able to determine the proportion of leukocytes 
in a cancer sample accurately.

Methods
Data acquisition
We employed several Illumina InfiniumHumanMeth-
ylation450 BeadChip datasets from the Gene Expression 
Omnibus and The Cancer Genome Atlas programme 
(TCGA) for our analysis. All data were downloaded and 
imported into R-Studio and Microsoft Excel for analysis. 
We performed initial biomarker discovery with the Moss 
dataset (GEO accession: GSE122126) [10] and validation 
of blood-derived methylation patterns with the Reinius 
dataset (GEO accession: GSE35069) [11]. To examine the 
methylation of HOXA3 and MAP4K1 in different haema-
topoietic stem cell populations, we utilised the Lessard 
dataset (GEO accession: GSE56491). Analysis of DNA 
methylation differences at the HOXA cluster in Alzheimer 
disease was recreated using dataset produced by Smith 
et  al. (GEO accession: GSE80970) [30]. We obtained the 
pan-cancer DNA methylation data and corresponding 
leukocyte estimates from the TCGA Pan-cancer Atlas 
publication page (https:// gdc. cancer. gov/ about- data/ publi 
catio ns/ panca natlas), respectively [13, 60].

Biomarker discovery
We performed initial biomarker discovery with the dataset 
published by Moss et al. [10] (GEO accession: GSE122126). 
This dataset contained methylation data in the form of 
β-values for 423,213 individual CpG sites across. We 
excluded all cfDNA and in vitro mix samples, only exam-
ining data from sorted, healthy tissue samples. In total, we 
used 23 of 101 samples in the dataset. We calculated the dif-
ference between leukocyte β-values and the mean β-values 
of all other cells to identify leukocyte-specific methyla-
tion patterns. We considered CpG sites with an absolute 
β-value difference of ≥ 0.8 as ls-DMPs. ls-DMPs outside 

CpG islands (as described by Illumina Infinium) were dis-
carded to ensure a high density of CpG sites per read. CpG 
probe locations were determined with the annotation pack-
age, ‘IlluminaHumanMethylation450kanno.ilmn12.hg19’, in 
R-Studio.

Sample collection and processing
PBMC isolation and DNA purification
PBMCs were isolated using density centrifugation with 
Ficoll-Paque. Simply, blood was collected into EDTA col-
lection tubes. After transfer to 50-mL Falcon tubes, the 
blood was mixed with an equal volume of PBS, before 
careful layering onto Ficoll-Paque solution (room tem-
perature) in a clean, 50  mL Falcon tube. After centrifu-
gation (800  g for 20  min at room temperature, with no 
braking), the mononuclear cells (on top of Ficoll-Paque 
layer) were extracted. The PBMCs were then washed sev-
eral times with RBC lysis buffer (155 mM  NH4Cl, 10 mM 
 KHCO3, 0.1  mM EDTA) to remove contaminating red 
blood cells. PBMC DNA was then isolated using the 
QIAAMP DNA Blood mini kit (QIAGEN #QIAG51104).

Intestinal organoid culture and DNA purification
DNA was extracted from cryopreserved intestinal orga-
noids using UltraPure Phenol:Choloroform:Isoamyl 
Alcohol (25:24:1) (Invitrogen Cat#15,593–031) follow-
ing the manufacturer’s instructions. Isolated DNA was 
resuspended in RNAse-free water and quantified using 
Thermo Scientific Nano Drop Spectrophotometer. Intes-
tinal organoids were cultured according to the established 
protocol [61] from crypts isolated from rectal biopsies as 
described previously [62]. The participants’ provided writ-
ten informed consent. The sample collection was approved 
by the Sydney Children’s Hospital Ethics Review Board 
(HREC/16/SCHN/120). Crypts were seeded in Extracel-
lular Matrix (70% matrigel (Growth factor reduced, phe-
nol-free; Corning 356,231) in 24-well plates at a density 
of ~ 10– 30 crypts in 3 × 10  µl droplets per well. Intesti-
Cult Organoid Growth Media (STEMCELL Technologies) 
change was performed every second day and organoids 
were grown for 7–10  days, harvested from Matrigel and 
cryopreserved prior to DNA extraction.

Saliva preparation, cell isolation, and DNA purification
We collect 5-mL unstimulated saliva samples as previ-
ously described [18]. In the 30  min prior to collection, 
participants only consumed water. To isolate salivary 
leukocytes from buccal epithelium, we centrifuged sam-
ples at 400 RCF and washed them with 0.01 Molar PBS. 
Buccal epithelial cells were isolated using fluorescence-
activated cell sorting (FACS) using only forward-scatter 
and side-scatter. Salivary leukocytes were isolated using 
sequential cellular filtration. Samples were first filtered 

https://gdc.cancer.gov/about-data/publications/pancanatlas
https://gdc.cancer.gov/about-data/publications/pancanatlas
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through a 40-µm, then a 20-µm mesh filter to exclude 
buccal cells.

We smeared a fraction of each sample onto microscope 
slides and stained them with haematoxylin and eosin to 
assess the cellular composition of both the sorted cell 
populations and mixed saliva. Cell counts were per-
formed manually, and each slide was viewed under the 
microscope using a 20 × objective. A field of view was 
chosen at random where there were appropriate cell 
numbers, all the cells in the field could be adequately 
identified (i.e. clumping and overlapping of cells), and 
there was an acceptable level of staining to identify each 
cell. We counted a minimum of 100 cells across two fields 
per slide.

DNA was extracted using the BOMB.bio TNA extrac-
tion from mammalian tissue protocol [63]. In short, cells 
were lysed in 1 × TNES and 0.5 µL of 20  mg   mL−1 of 
proteinase K. The lysate was mixed with 6 M GITC, car-
boxyl-coated magnetic beads in suspended TE, and abso-
lute isopropanol in a ratio of 1:2:2:4, respectively. After 
a 5-min incubation, samples were applied to a magnet 
and washed once with absolute isopropanol and twice 
with 70% ethanol. We eluted the DNA from the magnetic 
beads with TE buffer and measured the concentration 
with high sensitivity dsDNA Qubit.

Bisulphite conversion and amplicon sequencing
We performed bisulphite conversion with 200  ng of 
extracted DNA using the Zymo Research EZ-96 DNA 
Methylation MagPrep kit per the manufacturer’s 

guidelines and measured DNA concentration with the 
ssDNA Qubit. We amplified at least 75 ng of converted 
DNA using the dual-index, four-primer PCR assay 
(Fig. 7). We performed the reaction over two amplifica-
tion steps. In the first step, converted DNA was ampli-
fied with the KAPA HiFi Uracil + ReadyMix and either 
0.1  µM or 0.3  µM of first step primers for HOXA3 and 
MAP4K1 amplicons, respectively. Each reaction was 
topped up to 25 µL with nuclease-free  H2O. Amplifica-
tion cycling parameters were 95  °C for 2 min, 23 cycles 
of 98  °C for 20  s, 59  °C for 10  s, and 72  °C for 20  s. A 
final elongation step was performed for 5  min at 72  °C. 
Reactions were placed on ice, and 0.2 µM of the second 
step primers (Illumina P5 and P7 adapters and TruSeq 
indexes with added linker sequence, Table S7) was added. 
Amplification was repeated as above for five additional 
cycles. We used solid-phase reverse immobilisation of 
carboxyl-coated magnetic beads suspended in polyethyl-
ene glycol to size select for DNA fragments the length of 
the amplicons [63]. We sequenced the amplicons on the 
Illumina iSeq100 system.

Primer sequences can be found in Table S7. The 
HOXA3 amplicon includes cg00921266 and cg08101036. 
Suitable primers for the MAP4K1 amplicon could not be 
designed to include cg05258935 or cg02798280; however, 
the amplicon targets the same CpG island within 250 
base pairs of both sites.

Fig. 7 Diagram of dual index, four‑primer amplicon‑bisulfite PCR. The bisulfite converted template DNA (1) is amplified in an initial cycle with 
primers containing a sequence specific region (green) and overhanging ‘handle’ sequence (blue) (2). After amplification, the handle is incorporated 
into the amplicon (3). A second amplification cycle is completed with primers complementary to the handle (blue) and an overhang consisting of a 
multiplex sequencing index and Illumina adapters (red) (4) such that the indexes and adapter are incorporated into the final PCR product (5)
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Data processing and statistical analyses
We removed adapter sequences from each read using 
Cutadapt and TrimGalore [64]. Using Bismark [65], we 
mapped the amplicon reads to a custom ‘genome’ con-
taining only the amplicon sequences. The sequences 
used for mapping were obtained from the UCSC genome 
browser hg38 (HOXA3: chr7:27,113,957–27,114,300, 
MAP4K1: chr19:38,596,411–38,596,696). Whole-genome 
bisulfite sequencing data of 19 different mouse tis-
sues obtained from Hon et  al. [5] were mapped to the 
MGSCv37 (mm9) mouse reference genome using Bis-
mark and visualised using SeqMonk.

We produced the heatmaps, density plots, cell-type-
calling analysis, and linear regression using custom 
R-scripts in R-Studio. We performed the logistic regres-
sion analysis and ROC curve construction in R-Studio 
using the pROC package.

We estimated the proportion of infiltrating leukocytes 
in the prefrontal cortex of individuals with Alzheimer 
disease using the methylation of cg00921266. To do this, 
we employed the formula: Lest = m6−m0

mL
 , where the  Lest 

is the leukocyte estimate,  m6 is the methylation in the 
prefrontal cortex at Braak stage 6,  m0 the methylation 
at Braak stage 0, and  mL the methylation in leukocytes 
based on the Moss dataset.

Selection of online datasets for analysis of inflammatory 
disease
We searched for all ls-DMPs within the EWAS Atlas depos-
itory (https:// ngdc. cncb. ac. cn/ ewas/ atlas) to determine 
associated disease traits correlating with hypo- or hyper-
methylation. We summed the number of unique ls-DMPs 
associated with each disease trait and focused a more 
comprehensive literature search on the top three diseases 
using the PubMed database. Our specific search terms 
were ‘DNA methylation’ and either ‘psoriasis’, ‘inflamma-
tory bowel disease’, or ‘Alzheimer disease’. We included 
publications from 2010 onwards and where analysis of 
affected tissues was examined (i.e. skin, intestine, or brain) 
and excluded publications examining only the immune cell 
populations of affected patients. We recorded the num-
ber of hypo- or hypermethylated CpG sites and regions 
reported in each publication (from both main-text and sup-
plementary data) that overlap with the ls-DMPs we have 
identified. Additionally, we assessed each publication on a 
number of criteria: (1) the tissue type studied as either bulk 
or sorted cells, (2) the methodology used to gather data, (3) 
the use of controls or cellular deconvolution techniques to 
mitigate the impact of multiple cells on data analysis, and 
(4) overall discussion of cellular heterogeneity, and in par-
ticular, leukocyte infiltration into tissues in samples and 
how it related to the study’s findings.
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Additional file 1. Table S1: CpG sites with a Δ β‑value of ≥ 0.8 between 
leukocytes and all other tissues within the Moss et al., 2018 dataset 
(GSE122126). Table S2. List of publications and relevant traits identified 
using the EWAS ATLAS that report one or more of our CpG sites from 
Table S1 as being differently methylated in their cohort. Table S3. List of 
publication titles and DOIs from publications listed in Table 2. Table S4. 
Table of publciations identifed from either the EWAS ATLAS or a PubMed 
search of a relavent trait that report one or more of our CpG sites from 
Table S1 as being differently methylated in their cohort. Table S5. Table of 
publciations identifed from either the EWAS ATLAS or a PubMed search of 
a relavent trait that report a differently methylated region containing one 
of our CpG sites from Table S1. Table S6. CpG sites with a Δ β‑value of ≥ 
0.8 between leukocytes and cortical neurons within the Moss et al., 2018 
dataset (GSE122126). Table S7. List of primers used in this study.

Additional file 2: Figure S1. Distribution of ls‑DMPs with respect to 
genes and CpG islands. Pie charts showing the proportion of hyper‑ (a 
‑ b) and hypo‑methylated (c ‑ d) ls‑DMPs in relation to the closest gene 
and the nearest CpG island, respectively. Figure S2. Heatmap of whole 
genome bisulfite sequencing at the HOXA3 locus from 19 different 
mouse tissues (chr6: 52125343‑52127779, mm9; human equivalent is 
chr7:27,113,454‑27,115,864, hg38). Data was separated into 100 base pair 
windows and overall methylation was determined with SeqMonk. Figure 
S3. Deconvolution of in vitro mixed PBMC and Intestinal organoid DNA 
based on MAP4K1 DNA methylation. (a) Example methylation heatmap 
outputs of the MAP4K1 amplicon for PBMCs (left), 50:50 mix (center), and 
Intestinal organoid (right). Each row represents an individual read, and 
each column is a CpG site within the amplicon; column names refer to the 
CpG position in the read. (b) Density plot for the number of methylated 
CpG sites per read in pure Intestinal organoid (blue) and pure PBMC (red) 
samples. The y‑axis represents the probability per unit on the x‑axis such 
that the area under the curve for a specific interval is equal to the prob‑
ability of the number of methylated CpGs in that interval. Bandwidth is 0.8 
(c) Stacked bar chart of the proportion of classified for each sample type. 
Reads were classified as Intestinal organoid (blue), PBMC (red), or unclassi‑
fied (grey). (d) Scatter plot of observed read classification vs expected read 
classification for Intestinal organoid and PBMC. Figure S4. All heatmap 
outputs for HOXA3 in vitro mixes. Row 1: Intestinal Organoid replicates 1‑3. 
Row 2: Intestinal Organoid replicates 4‑6. Row 3: in vitro mixes 99:1, 95:5, 
50:50 (as PBMC DNA : Intestinal organoid DNA). Row 4: in vitro mixes 5:95, 
1:99, PBMC replicate 1 (as PBMC DNA : Intestinal organoid DNA). Row 5: 
PBMC replicates 2‑3. Figure S5. All heatmap outputs for MAP4K1 in vitro 
mixes. Row 1: Intestinal Organoid replicates 1‑3. Row 2: Intestinal Organoid 
replicates 4‑6. Row 3: in vitro mixes 99:1, 95:5, 50:50 (as PBMC DNA : Intes‑
tinal organoid DNA). Row 4: in vitro mixes 5:95, 1:99, PBMC replicate 1 (as 
PBMC DNA : Intestinal organoid DNA). Row 5: PBMC replicates 2‑3. Figure 
S6. Binomial logistic regression for PBMC and Intestinal organoid in vitro 
mixes. Binomial logistic regression (a and c) and receiver operating charac‑
teristic (b and d) for the HOXA3 and MAP4K1 amplicons, respectively.

Additional file 3: Figure S7. Deconvolution of saliva based upon 
MAP4K1 DNA methylation patterns. (a) Example methylation heatmap 
outputs of the MAP4K1 amplicon for salivary leukocytes (left), raw saliva 
(center), and buccal epithelium (right). Each row represents an individual 

https://ngdc.cncb.ac.cn/ewas/atlas
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https://doi.org/10.1186/s43682-022-00011-z


Page 17 of 18Dunnet et al. Epigenetics Communications             (2022) 2:5  

read, and each column is a CpG site within the amplicon; column names 
refer to the CpG position in the read. (b) Density plot for the number of 
methylated CpG sites per read in pure buccal epithelium (blue) and pure 
salivary leukocytes (red) samples. The y‑axis represents the probability 
per unit on the x‑axis such that the area under the curve for a specific 
interval is equal to the probability of the number of methylated CpGs 
in that interval. Bandwidth is 0.45 (c) Scatter plot of observed read clas‑
sification vs expected read classification for three mixed saliva technical 
replicates. Expected percentage based on manual cell counts. Figure 
S8. All heatmap outputs for HOXA3 saliva samples. Row 1:  Salivary 
leukocytes 1.1 – 1.3, Salivary leukocytes 2.1. Row 2:  Salivary leukocytes 
2.2 – 2.3, Salivary leukocytes 3.1 – 3.2. Row 3:  Salivary leukocytes 3.3, Raw 
saliva 1.1 – 1.3. Row 3:  Buccal epithelium 1.1 – 1.3, Buccal epithelium 
2.1. Row 3:  Buccal epithelium 2.2 – 2.3, Buccal epithelium 3.1 – 3.2. Row 
4: Buccal epithelium 3.3. Figure S9. All heatmap outputs for MAP4K1 
saliva samples. Row 1:  Salivary leukocytes 1.1 – 1.3, Salivary leukocytes 
2.1. Row 2:  Salivary leukocytes 2.2 – 2.3, Salivary leukocytes 3.1 – 3.2. Row 
3:  Salivary leukocytes 3.3,  Raw saliva 1.1 – 1.3. Row 3:  Buccal epithelium 
1.1 – 1.3, Buccal epithelium 2.1. Row 3:  Buccal epithelium 2.2 – 2.3, Buccal 
epithelium 3.1 – 3.2. Row 4: Buccal epithelium 3.3. Figure S10. Binomial 
logistic regression for saliva samples. Binomial logistic regression (a and c) 
and receiver operating characteristic (b and d) for the HOXA3 and MAP4K1 
amplicons, respectively. Figure S11. Estimation of increasing leukocytes in 
the Alzheimer disease brain. (a) DNA methylation (expressed as a β‑value) 
at cg00921266 (HOXA3) in Braak stage 0 and Braak stage 6 prefrontal corti‑
ces. (b) The estimated increase in leukocytes within the Braak stage 6 brain 
based upon the increase in DNA methylation at cg00921266. Alzheimer 
Disease methylation data obtained from Smith et al., 2018 (GSE80970). 
Figure S12. The relationship between cg00921266 methylation and the 
proportion of leukocytes in individual cancers. Scatterplots of cg00921266 
DNA methylation (expressed as a β‑value vs a leukocyte estimate for all 
individual cancers in the TCGA pan‑cancer dataset. ACC = Adrenocortical 
carcinoma; BRCA = Breast invasive carcinoma; CESC = Cervical squamous 
cell carcinoma and endocervical adenocarcinoma; CHOL = Cholan‑
giocarcinoma; COAD = Colon adenocarcinoma; ESCA = Esophageal 
carcinoma; GBM = Glioblastoma multiforme; HNSC = Head and Neck 
squamous cell carcinoma; KICH = Kidney Chromophobe; KIRC = Kidney 
renal clear cell carcinoma; KIRP = Kidney renal papillary cell carcinoma; 
LGG = Brain Lower Grade Glioma; LIHC = Liver hepatocellular carcinoma; 
LUAD = Lung adenocarcinoma; LUSC = Lung squamous cell carcinoma; 
PAAD = Pancreatic adenocarcinoma; PCPG = Pheochromocytoma and 
Paraganglioma; PRAD = Prostate adenocarcinoma; READ = Rectum 
adenocarcinoma; SARC = Sarcoma; SKCM = Skin Cutaneous Melanoma; 
STAD = Stomach adenocarcinoma; UCS = Uterine Carcinosarcoma; UCEC 
= Uterine Corpus Endometrial Carcinoma. Excludes thyroid carcinoma, 
bladder urothelial carcinoma, mesothelioma, testicular germ cell cancer, 
uveal melanoma, ovarian serous cystadenocarcinoma (found in Figure 5). 
Data was obtained from the TCGA Pan‑cancer atlas publication page 
(https:// gdc. cancer. gov/ about‑ data/ publi catio ns/ panca natlas). 
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